Entidades Sintáticas de IMP

- Num literais inteiros
- Bool literais boolenos
- estaf, false
- \cdots 'h''x Id - identificadores
- Bexp expressões booleanas
- Aexp expressões aritméticas
- sobnandos moO e
- **5**

INFO5516 - Semântica Formal

Para expressões aritméticas - Aexp

$$x = x \quad |$$
 $x = x \quad |$
 $x = x \quad |$

Sintaxe Abstrata - Aexp

- Variáveis não são declaradas
- Todas variáveis possuem um valor inteiro
- Não há efeitos colaterais

IMP - Uma Linguagem Imperativa Simples

Semântica Operacional

7/9007

Departamento de Informática Teórica - Instituto de Informática - UFRGS

Plano

Vamos estudar uma linguagem imperativa simples - IMP

- Sintaxe abstrata
- Semântica Operacional
- Sistema de Tipos (para um extensão de IMP)
- Semântica Denotacional
- Semântica Axiomática
- Relações entre várias semânticas

Começamos com Semântica Operacional

Semântica Operacional de IMP

- a significado de expressões de IMP depende dos valores das variáveis
- Semântica operacional abstrai certos aspectos da execução de um interpretador concreto
- O valor de variáveis em um dado momento (estado ou $\mathbb{Z} \to \mathbb{Z}$ de ld $\to \mathbb{Z} \to \mathbb{Z}$
- de agora em diante chamaremos o conjunto $\operatorname{Id} \to \operatorname{IZ} \operatorname{de} \Sigma$

Usamos σ , σ , ... como metavariáveis sobre elementos de Σ

AMI ab qat2-8i8.O.2

 \bullet $a, \circ \downarrow v$, $b, \circ \downarrow v \in C, \circ \downarrow \circ^{1}$

INF05516 - Semântica Formal

12/2.q

- A avaliação de expressões aritméticas e boolenas não produz efeitos colaterais
- A avaliação de comandos produz efeitos colaterais mas não produz um resultado direto
- \bullet "resultado" de um comando é um novo estado: $C, \sigma \downarrow \sigma'$
- A avaliação de um comando pode não terminar

Sintaxe Abstrata - Bexp

Para expressões booleanas - Bexp

$$aut = true$$
 $aut = aut$ $aut = aut$ $aut = aut$ $aut = aut$

 $p_1 \vee p_5$

Sintaxe Abstrata - Com

C ::= skip C_1 : C_2 C_3 : C_4 C_5 C_5 C

Para comandos - Com

INF05516 - Semântica Formal

 \supset d əlidw \mid

As regras de tipo estão embutidas na definição da sintaxe assim como em expressões, parênteses podem ser necessários quando árvores de sintaxe abstrata são

Inearizadas

Regras de Avaliação para Bexp(cont.)

$$\frac{b_{1},\sigma\ \psi\ \text{false}}{b_{1}\wedge b_{2},\sigma\ \psi\ \text{false}} = \frac{b_{2},\sigma\ \psi\ \text{false}}{b_{1}\wedge b_{2},\sigma\ \psi\ \text{false}} = \frac{b_{2},\sigma\ \psi\ \text{false}}{b_{1},\sigma\ \psi\ \text{true}} = \frac{b_{2},\sigma\ \psi\ \text{true}}{b_{2},\sigma\ \psi\ \text{true}}$$

• Regras acima não fixam ordem de avaliação

resultado final será false.

 Mas expressam o seguinte: na avaliação de uma conjunção, se um das expressões booleanas avaliar para false o

INFO5516 - Semântica Formal

12/11.q

Regras de Avaliação para Bexp(cont.)

- Regras acima também não fixam ordem de avaliação
- Expressam que na avaliação de uma disjunção basta que uma das expressões avalie para true para que o resultado final seja true.

Acgras de Avaliação para Aexp

$$(x) \circ \psi \circ (x)$$

$$(x) \circ (x) \circ (x)$$

12/6.q

Regras de Avaliação para Bexp

As premissas das regras para $= e \le são$ julgamentos avaliados pelas regras para Aexp

Note que as regras acima não estabelecem ordem de

avaliação

INF05516 - Semântica Formal

Regras de Avaliação para Com (cont.)

 $\sigma[x \mapsto n]$ é uma função definida da seguinte forma:

$$(h) o = (h)[u \longleftrightarrow x] o$$

 $u = (x)[u \longleftrightarrow x] \varrho$

IMP05516 - Semântica Formal

12/£1.q

Avaliação de Comandos - Observações

12/21.q

- A ordem de avaliação é importante e é especificada
- C_1 é avaliado antes de C_2 em C_1 ; C_2
- ullet C_2 não é avaliado em if true then C_1 else C_2
- O as C não $\mathcal C$ avaliado em while false C
- b é avaliado primeiro em if b then C_1 else C_2
- Regras não são estruturais
- Veja a regra para while
 Regras sugerem um interpretador
- if e while possuem múltiplas regras mas somente uma pode ser aplicada em um dado momento

Regras de Avaliação para Com

Regras de Avaliação para Com (cont.)

INF05516 - Semântica Formal

S.O. Small-Step de Com

$$\frac{\sigma, b \leftarrow \sigma, a}{\sigma, b =: x \leftarrow \sigma, a =: x}$$

$$[n \leftarrow x] \sigma, \sigma \leftarrow x \leftarrow x =: x$$

$$\frac{C_{1}, \sigma \to C_{1}, \sigma'}{C_{1}; C_{2}, \sigma \to C_{1}; C_{2}, \sigma'}$$
skip; $C_{3}, \sigma \to C_{3}, \sigma'$

INF05516 - Semântica Formal

12/71.q

S.O. Small-Step de Com- (cont.)

12/91.q

$$\frac{b,\sigma\to b',\sigma}{\text{if b then C_1 else C_2,σ}\to \text{if b then C_1 else C_2,σ}$$
 if true then \$C_1\$ else \$C_2,\sigma\$ \to \$C_1,\sigma\$ if false then \$C_1\$ else \$C_2,\sigma\$ \to \$C_2,\sigma\$

while $b \circlearrowleft_{\sigma} \circ \to \text{if } b$ then $(\circlearrowleft_{\sigma} \text{while } b \circlearrowleft_{\sigma})$ else skip, σ

Desvantagem de 5.0. Big-5tep

Não nos dá uma forma de falar sobre estados intermediários

• Logo não pode ser usada para semântica de

concorrência onde comandos podem ser executados de

रिल्लास गिर्गस्टरत्रीयवेत

Semântica *small-step* não possui essas limitações. Execução é modelada como uma seqüencia (possivelmente infinita)

Semântica Operacional Small-Step de IMP

Para Com: vamos definir uma relação $C,\sigma \to C',\sigma'$

- C" é obtido a partir de C por um passo de execução atômico
- Avaliação termina quando o comando é reescrito para o comando "terminal" skip
- Alguns comandos nunca reduzem para skip:

While true U

INF05516 - Semântica Formal

Granularidade do passo é escolha de quem define a semântica

Exercícios

Definir a S.O. small-step de Aexp e Bexp.

Dê outras estratégias para S.O. big-step de Bexp

Defins uma S.O. para o comando concorrente $C_1\|C_2$. Justifique o estilo de S.O. adotado.

Supor que:

• $C \equiv \text{ while } x > 1 C_1$,

• $C_1 = x : x : x : x = x + 1$, e

• o é tal que $\sigma(x)=2$ e $\sigma(r)=60$ verificar se C, σ \to skip, $\sigma[r\mapsto 120][x\mapsto 1]$ (trabalhoso)

12/1721 Formal