Nome:
Cartão:

Prova 2

Dicas gerais:

- Lê todas as questões antes de começar e pergunta em caso de dúvidas.
- Sempre justifique a sua resposta.
- Responde a cada questão, ainda que a resposta não esteja completa.

Questão 1 (Semântica denotational do laço while)

(0,5pt) Qual é a equação semântica que define a semântica denotational do laço while? Explique o significado dessa equação.

Questão 2 (Semântica axiomática: Média)

(2pt) Considere o seguinte programa P em IMP

```
while x < y do (

x := x+1

y := y-1
```

com a especificação $\{x=x_0 \land y=y_0 \land x \leq y\}P\{(x=y \lor x=y+1) \land x-x_0=y-y_0\}.$

- (a) Qual é uma invariante adequada para provar a corretude parcial (em relação a especificação)?
 - \sqcup true

 - \Box false

 - \Box $x = y \lor x = y + 1$
- (b) Prove a corretude parcial, usando o cálculo de Hoare com a invariante adequada do item (a).
- (c) Qual é uma variante adequada para provar a corretude total (em relação a especificação)?

 - \Box x+y
 - \Box y-x
 - $\Box y-x+1$
 - \Box y
- (d) Prove a corretude total, usando o cálculo de Hoare com a variante adequada do item (c).

Questão 3 (Semântica Denotational)

Considere o seguinte programa de IMP

while
$$(n>0)$$
 do ($n:=2*n-3$)

- (a) (1,5pt) Calcule $F^1(\perp)$, $F^2(\perp)$ e $F^3(\perp)$ explicitamente.
- (b) (1,5pt) Qual é o limite superior mínimo da cadeia

$$F^0(\bot) \sqsubseteq F^1(\bot) \sqsubseteq F^2(\bot) \sqsubseteq \cdots$$
?

1

(não é preciso provar)

v2031

Questão 4 (Execução inversa)

Suponhe um comando reverse c_1 c_2 que, dado dois comandos c_1 e c_2 , os execute na ordem c_2 e depois c_1 .

- (a) (1pt) Define a semântica denotational desse comando: qual é a equação semântica adequada?
- (b) (1pt) Usando as equações semânticas do item (a) e da sequência, prove que

$$C[\![\texttt{reverse} \ \mathbf{c_1} \ (\texttt{reverse} \ \mathbf{c_2} \ \mathbf{c_3})]\!] = C[\![\mathbf{c_3}; \mathbf{c_2}; \mathbf{c_1}]\!].$$

Questão 5 (Exponenciação descendente)

A exponenciação descendente é definida por $n^{\underline{k}} = n(n-1)\cdots(n-k+1) = n!/(n-k)!$ para $n \geq k$.

(a) (1,5pt) Dê uma implementação P em IMP de acordo com a especificação

$$\{n \ge k \ge 0\}P\{e = n^{\underline{k}}\}.$$

Observe que essa especificação implica que os valores inicias do n e k não são destruidos!

(b) (1,5pt) Prove que a implementação do item (a) é parcialmente correta usando o cálculo de Hoare.

2

v2031