Prof. Marcus Ritt

Revisão 1

Questão 1 (Noções básicos)

Quais das seguintes afirmações são verdadeiras (v) ou falsas (f)?

- (1) () O conjunto de variáveis livres da expressão $(\lambda y.y)(\lambda x.xy)$ é $\{x\}$.
- (2) () O tipo de $\lambda f: \operatorname{Int} \to \operatorname{Int}.\lambda x: \operatorname{Int}.f x$ no cálculo lambda tipado é ($\operatorname{Int} \to \operatorname{Int}$) $\to \operatorname{Int} \to \operatorname{Int}$.
- (3) () $(\mathbb{Z} \cup \{\omega\}, \leq)$ com uma extensão de \leq tal que $z \leq \omega$ para todos $z \in \mathbb{Z} \cup \{\omega\}$ é um domínio.
- (4) () Se (C, \sqsubseteq) é um conjunto parcialmente ordenado e se existe um $m \in C$ tal que $c \sqsubseteq m$ para todos $c \in C$, então a ordenação é completo.
- (5) () $(\mathbb{N} \cup \{\omega\}, \leq)$ com uma extensão de \leq tal que $n \leq \omega$ para todos $n \in \mathbb{N} \cup \{\omega\}$ é um domínio.
- (6) () Com g_2, g_3 como definido abaixo, $g_2 \sqsubseteq g_3$.
- (7) () Com g_2, g_3 como definido abaixo, $g_3 \sqsubseteq g_2$.
- (8) () Considerando a semântica do laço (C), g_2 é um ponto fixo da equação correspondente.
- (9) () Considerando a semântica do laço (B), g_3 é um ponto fixo da equação correspondente.
- (10) () Considerando a semântica do laço (A), g_1 é um ponto fixo da equação correspondente.
- (A) while true do skip
- (B) while x=0 do skip
- (C) while $\neg(x=0)$ do skip

$$g_1 \sigma = \bot$$

$$g_2 \sigma = \begin{cases} \sigma & \text{se } \sigma(x) = 0 \\ \bot & \text{caso contrário} \end{cases}$$

$$g_3 \sigma = \begin{cases} \sigma & \text{se } \sigma(x) \neq 0 \\ \bot & \text{caso contrário} \end{cases}$$

Questão 2 (Monotonia e continuidade)

O que significam os noções "monotônica" e "contínua" na semântica denotational? Explique as definições.

Questão 3 (Aplicação da semântica denotational)

Suponhe a seguinte extensão de IMP:

```
\mathbf{c} ::= \cdots \mid \text{ dobro } \mathbf{c} \text{ se } \mathbf{b} \mid \cdots
```

Intuitivamente, o comando \mathbf{c} seria executado duas vezes, se depois da primeira execução a condição é satisfeito. Senão, o comando \mathbf{c} é executado uma vez só. Define a semântica denotational de dobro com equações semântica adequadas (sem usar outros comandos).

Questão 4 (Avaliação da semântica denotational)

Considere o seguinte programa de IMP

```
while (n>0) do (n:=5-2*n)
```

v2064 1

- (a) Calcule $F^1(\perp)$, $F^2(\perp)$ e $F^3(\perp)$ explicitamente.
- (b) O que é o limite superior mínimo da cadeia

$$F^0(\bot) \sqsubseteq F^1(\bot) \sqsubseteq F^2(\bot) \sqsubseteq \cdots$$

(uma prova não é necessário)?

Questão 5 (Questão extra)

Aumente IMP com um comando break

$$\mathbf{c} ::= \cdots |\mathtt{break}| \cdots$$

Intuitivamente, se **break** ocorre em um laço **while**, a execução continua atrás do laço. Define a semântica operacional do IMP com **break**.

2

v2064