
Simulation of Mobile Applications1

1 This work is partially sponsored by ForMOS (CNPq, CNPq/ProTeM, FAPERGS) and Platus (FAPERGS) projects.

Fernando Luís Dotti, Lucio Mauro Duarte,

Bernardo Copstein
[fldotti, lduarte, copstein]@inf.pucrs.br

PUCRS – Faculdade de Informática – PPGCC
Av. Ipiranga, 6681 – Prédio 16 – ZIP 90619-900

Porto Alegre – RS – Brazil

Leila Ribeiro
[leila]@inf.ufrgs.br

Instituto de Informática – UFRGS
Av. Bento Gonçalves, 9500 – Bloco IV – ZIP 91509-900

 Porto Alegre – RS – Brazil

Keywords: Mobile and Nomadic Computing; Mobile
Applications; Distributed Systems.

Abstract
Mobile applications are composed by software components that
may migrate through the nodes of a network. Migration is
controlled by the software developer, being part of the
applications functionality. There are various potential
application fields for this new technology. However, developing
mobile applications is a difficult task since they are not only
distributed and concurrent, but also mobile. This increases the
complexity of testing in real conditions, where one cannot be
sure whether an error is a result from the mobile application or
from the environment in which it runs (e.g. the Internet).
Simulation is used in this work as a means for testing models of
mobile applications, such that the developer may check if the
model behaves as expected under known environment
conditions that can be chosen. We use a formal specification
language for mobile applications that is based on graph
grammars. The entities of a model according to this formalism
can be simulated and code can be generated to build a real
application. This paper describes the specification formalism,
the code generation approach, and the simulation environment in
more detail. Parts of a specification of a mobile application that
has been simulated and executed are given as examples.

1 INTRODUCTION
 The fast and continuous growth in processing and
communication capabilities led to massively distributed
computational environments, e.g. the Internet. These
environments are often called open environments, being
characterized by: massive geographical distribution; high
dynamics (appearance of new nodes and services); no global
control; partial failures; lack of security; and high heterogeneity
[2]. Building distributed applications for such environments is a
complex task. Research efforts have been directed to manage
this complexity through the development of new paradigms,
theories and technologies for distributed applications. Within
this context, code mobility [9] has received special attention due
to its flexibility and potential use in various application fields
[2].
 In traditional distributed systems, interacting components
are primarily static, i.e., a component remains on the same
location during its whole life-cycle and interactions with other
components take place by exchanging messages through the
communications network [2]. Code mobility can be defined as
the capability of dynamically changing the location of an
executing component. Migration is not transparent to the
distributed software developer, it is instead explicitly handled by
him/her as part of the application's functionality. Under the

various paradigms enabled by code mobility [2], the Mobile
Agent one is very promising and also investigated because of the
agents mobility autonomy: a mobile agent is able to stop its
execution on a location, migrate through the network carrying
its internal state, and resume its execution on another location.
Currently there are standards, platforms and languages available
for mobile code [19]. However, there are still problems to be
addressed in order to build a sound support for mobile code.
Most of these issues are related to what is called controllability
of agent-based activities in [2], involving support to the
generation of correct mobile code applications and support to
the reliable execution of mobile applications.
 Simulation models may be very useful for the development
of mobile applications as a specification and testing means.
These models may be used to check if the components of an
application behave as expected, if they are independent from
each other such that the replacement of a simulated component
by a more sophisticated version becomes possible, and also to
check the applications behavior under various environment
conditions (e.g. failure simulation). The main advantage of
developing a mobile application using a simulation model is the
possibility to validate strategies as well as control algorithms. If
the simulation model is described using formal specification
there is also the possibility of performing verification techniques
to guarantee that the required properties of the system are
fulfilled.
 In the context of project ForMOS we are following an
approach for the development of correct mobile applications that
relies very much on simulation, among other methods and tools.
Our approach involves: a formal specification language with
abstractions that allow the representation of places and mobile
agents (and their inherent mobility across places) [7]; a
straightforward mapping of models written according to this
formalism to entities of a simulation environment; the event
driven simulation environment, which supports the abstractions
of places and mobile agents; and another mapping of models
written using this formalism to entities of a real application,
running on top of a mobility support platform [8]. Verification
tools and methods are under investigation to be integrated to our
approach.
 In this paper we briefly present the specification formalism
and the code generation facility for mobile applications
specified following this formalism; and discuss in more detail
about the importance of simulation for mobile applications, as
well as present a simulation environment and some simulation
cases with mobile applications.
 This paper is organized as follows: Section 2 presents the
specification formalism; Section 3 discusses the simulation
environment; Section 4 presents the code generation approach,
through which we generate mobile applications to run on top of

a commercial mobility support platform; finally, Section 5
brings us to the conclusions and future works.

2 FORMAL SPECIFICATION OF MOBILE

APPLICATIONS
When considering mobile code applications, complex

distribution aspects, like location and mobility, communication,
security, and, in some cases, failures, have to be taken into
consideration during system design. Therefore, it is necessary to
provide the designer with abstract constructions to specify and
reason about those aspects. Starting with the Pi-calculus [16,
17], there has been some efforts towards computational models
for mobile systems, e.g. based on abstract state machines [15],
on Mobile Ambients [3], and on Actors [1]. However, to be used
in practical applications, high-level specification languages as
well as programming languages whose semantics can be
described using such models must be provided. There are some
proposals of such programming languages (e.g. KLAIM [7], Pict
[20], Nomadic Pict [25]), but on the level of specification there
is still no formal method that is largely used for mobile
applications.

A formal specification language allows the non ambiguous
description of a system, using well-defined syntax and
semantics. The formal specification language used in this work,
is based on the restricted form of graph grammars called Object-
Based Graph Grammars [7]. Besides being a visual language,
the object based style adopted is familiar to most developers,
making the formalism easier to be understood, used and
analyzed, being also closer to implementation languages that
follow the object-oriented paradigm. OBGGs were extended in
[7] to become a suitable specification technique for mobile code
applications. This extension introduced the notions of locality
and mobility. Here, we briefly present this formalism.

An application is composed by a set of instances of entities.
Roughly speaking, each entity corresponds to a class: it specifies
a type of object, its internal state, types of messages it may
respond to and send, and the behavior of instances of this entity
when receiving a message. Moreover, to be able to simulate and
verify each entity separately, the entity has also an interface
description, that consists of an abstract description of the
behavior of the entity itself (the export interface) and an abstract
description of the behavior of entities used by this entity (the
import interface). Each of these three components of an entity
(behavior, import and export) is described by an OBGG. The
existence of description of behavior in the interfaces makes it
possible to check, when building an application by composition
of entities, whether the assumed behavior of one entity (import
interface) is in accordance with the corresponding actual
behavior of the used one (export interface). Due to space
limitations, we here we will concentrate on the behavior of each
entity.

An OBGG has three components: a type graph, and initial
graph and a set of rules. The type graph specifies the kinds of
entities, attributes, messages and parameters that will be used in
the description of an entity. The initial graph describes the initial
state of instances of that entity. The rules specify the behavior of
the instances of the entity. The behavior is always triggered by
the receipt of a message. The application of rules successively

changes the state of the system, starting from the initial state. A
rule can be applied whenever the left-side of the rule is a sub-
graph of the current system state graph, this is called a match or
occurrence of the rule. When applied, the rule brings the system
to a new state defined as: Items in the left-side that are not
present in the right-side are deleted; items in the right-side that
are not present in the left-side are created; and items that are
present in both sides of the rule are preserved.

Two (or more) enabled rules are in conflict if their matches
need write access to common items. Many rules may be applied
in parallel, as long as they do not have write access to the same
items of the state (even the same rule may be applied in parallel
to itself, using different matches).
 To represent mobile applications, two specialized entities
were defined: places and mobile components. These entities
capture the basic behavior concerning communication and
mobility. Places represent the possible locations where mobile
components may execute, offering basic functions as storage,
communication and computational power, and access to
services. Furthermore, places offer message passing and move
services to mobile components. Mobile components represent
software components that may migrate from place to place
during their execution, using resources and services from the
places they visit. When creating a mobile application, the user
may use the entity place (but he/she is not allowed to modify
this entity), and specialize the entity mobile component as
he/she wants. This will be illustrated in the following example.
 Suppose a Mobile Component (MC) that shall visit 3
market Places (P_1 to P_3). In each place, MC asks for the
name of an Information Service (IS) in that place and then asks
that IS for the price of a specific product. At the end of the
journey, MC returns to the origin carrying the information about
the place that has the best (smallest) price and informs that to the
Customer. Figure 1.a shows a the (partial) specification of this
entity. This MC-TypeGraph graph specifies the types of the
attributes and messages of this entity. For example, an instance
of MC has 7 attributes: 3 belonging to pre-defined data type sets,
3 of type place and one of type customer entity. The elements
below the dashed line indicate imported items, whereas the ones
above this line are the internal state and messages treated by this
entity. The initial graph MC-InitGraph indicates the initial state
of the attributes when one instance of this entity is created. The
gray elements denote instantiation variables. Some of the rules
of the specification of this entity are shown. Again, the ones
above the dashed line correspond to the specification of the
behavior of this entity, and the ones below to the expected
specification of the imported (or used) entities (the export
interface is not shown). For example, rule AskNext specifies that,
when receiving a Price message with a price that is slower that
the best recorded price (r<b), and having more places to visit
(n!=0), the MC component updates its attributes concerning the
value and address of the best price (bestPrice and bestPrLoc)
and asks its location where to go next. Rule ReqMove specifies
that, when sending a message to an instance of Place, MC
expects to receive a message Continue in return (another rule not
shown here specifies the expected message when the movement
did not succeed).

(a)

 (b)

Figure 1. (a) Specification of the MC entity; (b) Model for the Market Application.

 Figure 1.b shows an example of model for this application.
This is obtained as a composition of the necessary instances of
all entities involved. The restrictions put on the kinds of rules,
import and export interfaces (see [5]) guarantee that the
semantics of the entities is compositional [22, 24], that is, the
behavior of each entity is preserved within the whole system. To
simulate this model, we just have to use the descriptions of
behavior described within each entity (here we do not use the
import and export interfaces anymore, they are used just to aid
building a consistent model).

3 THE SIMULATION ENVIRONMENT
 Simulation models can be very useful as a means of
specification and test of a system. They provide a simplified
representation of the system, allowing its analysis. The main
advantage of using simulation in this work is the possibility of
validating a project strategy before implementing the system.
Simulating the execution of the system, one can find errors that
would be hardly identified when testing the real system
execution, specially if one consider open systems with mobile
components. Important time and performance aspects can also

be considered without actual implementation of the system.
More details on these aspects can be found in Section 3.3.
 The simulator developed in the PLATUS project [4], using
the Java language [14], allows one to simulate models described
in OBGG. This simulator works with entities, which are the
system components, corresponding to the OBGG entities, and
messages, which are the means of communication between
entities. The mapping from OBGGs specifications to simulator
entities is straightforward. Graphic tools are under development
to allow the graphical creation of simulation models and their
automatic conversion to the corresponding simulation code.

3.1 Simulation of OBGGs

In this section we discuss how an object-based graph
grammar model as presented in Section 2 can be simulated. For
this, we will need some definitions: Given an entity E, a rule r of
E and a message m sent to E
 - tmin(m) is the minimum time in which the message m can
be treated (that is, m.tmin+T, where T is the current time);
 - tmax(m) is analogous to tmin(m) for the maximum time;
 - trigger(r) is the name of the message treated by rule r;
 - readAtr(r) is the set of (names of) attributes of E that are
read-only for rule r (i.e., items that are preserved by this rule);
 - writeAtr(r) is the set of attributes of E that may be
modified by rule r (items that are deleted/created/modified);
 - condition(r) is a (boolean) condition that must be satisfied
by a rule to be applied. Typically, this condition is defined by
some requirement on the values of the attributes used by the
rule.

Each state of a computation described by a graph grammar

is a graph that contains instances of entities (with concrete
values for their attributes), messages to be treated, and the
current time (simulation entity). In each execution state, several
rules may be enabled (and therefore are candidates for execution
at that instant in time).

Enabled Rule: A rule r is enabled in a state S by an instance m
if m is of type trigger(r), m belongs to state S, each attribute in
readAtr(r) have the necessary value in S, each attribute in
writeAtr(r) have the necessary value in S, and condition(r) is
true in S. In this case, the pair (r,m) is a candidate for rule
application.

Rule Application: A pair (r,m) can be applied if r is enabled by
m. The effect of this rule application is that all attributes of
entity E in writeAtr(r) will receive the new values described by
the rule, message m will be deleted and the new messages
described in the right-hand side of the rule will be created.
Nothing else in the state is modified by this rule.
 Rule applications only have local effects on the state. However,
there may be several rules competing to update the same
portion of the state. To determine which set of rules will be
applied in each time, we need to choose a set of rules that is
consistent, that is, in which no two or more rules have write
access to the same resources. For this we will use the concept of
conflict:

Conflict: A rule application (r,m) is in conflict with a rule
application set R if writeAtr(r) ∩ writeAtr(R) ≠ ∅ (where
writeAtr(R) is the union of all write attributes of rules in R).

Note that, in this definition, we do not consider many read
accesses with one write access as a conflict. Therefore, these
rules may be applied in parallel. This choice is in accordance
with the true concurrency semantics model of Graph Grammars
[23] and it allows for a high parallelism degree in our system.

3.2 The Simulation Algorithm

Summarizing the definitions until now, an object-based
graph-grammar specification can be seen as a set of entities
executing in a collaborative way. Each entity keeps its particular
state and communicates with others by message passing. The
behavior of each entity is described as a set of rules. More than
one rule may be candidate to treat one message, but only one
will be triggered per message. The selection follows a uniform
distributed random function. The execution of a rule may change
the values of the entity's attributes, create new entities and
generate new messages.

Analyzing the model characteristics we conclude that an
object-based graph-grammar model is a discrete-state system:
the state of the entities change as rules are executed in response
to the messages. The use of discrete-event simulation is thus a
natural approach to model evaluation of such systems.

In the literature, many approaches for the execution of
discrete-event models were discussed. We may use a fixed-step
or event-driven [10] time advancing mechanism and, in an
orthogonal view, we may use a single threaded or a multi-
threaded (parallel) [12] execution approach. Once parallelism is
an intrinsic property of graph-grammars, the multi-thread
approach seems to lead to a faithful representation of the
behavior of such systems. An interleaving approach, as would be
necessary to model parallelism in the single thread approach,
would lead to a much more complex implementation, mainly
due to the fact that some rule applications that may occur in
parallel cannot be sequentialized in any order preserving the
same semantics.

In the same way the event-driven time advancing
mechanism is a natural choice because the fixed step approach is
useful only for a specific set of problems where a fixed step for
time advancing is easily identified.

The simulation of discrete events uses a list of messages (or
events) sorted by time-stamp, known as event list (EVL). The
process of simulation consists in selecting the event (or events)
with the smallest time-stamp, executing it (them) and advancing
the simulated time. There is only one variable that corresponds
to the simulated or virtual time.

For the parallel simulation, the system to be simulated is
divided into modules to be executed in parallel. To each module,
a logical process (LP) is associated. Each LP can work with the
evolution of its own processing time, keeping its own Local
Virtual Time (LVT). The set of all LVTs define the Global
Virtual Time that represents the advancement of the simulated
time. Data exchange between LPs, however, implies the need of
synchronization of communication mechanism and clocks [10,
11, 12]. There are two main approaches to achieve this
synchronization: the so called conservative approaches and the
optimistic approaches. The conservative approaches are based
on the idea that an event may only be triggered when it is safe to
do it, meaning that the involved LPs are correctly synchronized
and, consequently, Local Causality Constrains (LCC) problems
are not allowed [10]. Optimistic approaches do not assure that it
is safe to execute an event. When an LCC problem occurs,
recovery procedures are executed to bring the system into a safe
state.

The simulator must ensure that the graph grammars
formalism is faithfully simulated. Once the formalism allows
that all entities may execute at the same time, a multi-threaded
approach seems to be the best choice. Moreover, within an
entity, all non-conflicting enabled rules may be applied in
parallel. Due to the encapsulation imposed by the object-based
modeling, there can be no conflicts among entities.). By
analyzing the dependencies among enabled rules, we can
construct a set of non-conflicting enabled rules out of an
arbitrary set of enabled rules. Messages that cannot be treated in
the current time due to such conflicts must be posted again later.
If it is not possible to post the message again (because the
maximum time would be exceeded), the simulation shall be
aborted as there was an specification error: it is not possible to
treat the messages within the times they were specified. The
proposed algorithm uses a simplified version of a conservative
approach adapted to our needs.

Each entity in the model is mapped to a LP. This LP is
responsible for the selection of the messages that may be treated
in the current time, the choice of the rules that may be activated
to treat these messages, and the selection of the set of rules that
will effectively be triggered. For each triggered rule, a new LP
will be created. This LP has a short life, ending when the
execution of the rule ends. This assures a high degree of
parallelism among the rules that may be triggered in the same
entity (and consequently in all entities) in a specific point in
time.

For simplicity, however, we keep only one centralized
clock. So all the entities are synchronized by this clock and the
degree of parallelism is restricted to those rules that occur at the
same time. This is not very efficient if we think about processing
time, but is enough to assure the correct simulation of the model
and is a good base to improve the algorithm in the future.

Once the clock is unique, we have a kernel. The kernel is a
special entity that keeps the EVL and the simulated clock. It is
also an LP. When an entity wants to send a message to any other
entity (including itself), it must send the message to the kernel.
The scheduler will insert the message in the EVL sorted by time
stamp. Each time the clock advances, all messages whose
tmin(m) ≥ T, where T is the current time, are sent to their target
entities. This way an entity's EVL stores only messages that may
be selected for execution in the current time. In each time, all
entities will empty their EVLs. The time will advance only when
all triggered rules stop to execute.

3.3 Simulation of Mobile Applications

As stated in Section 2, we have represented mobile
applications in terms of OBGGs. To do this, specialized entities,
namely Place and Mobile Component, were specified using
OBGGs. The created entities follow the behavior described in
Section 2. Mobile Components are assigned to a Place and may
migrate among Places. With these abstractions, mobile
applications can be modeled. The developer uses (specializes)
these abstractions to represent the specific entities of the
application scenario.

Since the simulator supports the simulation of OBGG
models, and since mobile applications can be represented using
OBGG, it is therefore possible to simulate mobile applications.
We have used the simulator to test the behavior of various
applications, including the market application presented in
Section 2 and currently also a model for active networks.

The tool proved to be valuable since relevant specifications
errors could be found during the specification phase, like for

instance: sending to an entity a message that is not treated by
that entity; wrong definition of conditions of a rule resulting that
the rule was never applied, or always applied; and deadlock
situations, among others.

Besides the use of simulation as a tool to test specifications,
it can also be used to analyze the expected performance of the
application. Assigning times to local and remote message
delivery as well as to the migration of a software component
allows the developer to represent the latency of network links,
the amount of time necessary to transfer a mobile component or
other time consuming operations, making it possible to compare
the performance of different approaches and strategies of
distribution and mobility in complex scenarios.

Our simple application scenario can be analysed
analytically. Supposing we focus on one aspect to be
investigated: to decide which implementation approach should
be followed, regarding the best time of response, among the two
different approaches to implement the search for best price: (i)
using a traditional remote communication means (e.g. remote
procedure call - RPC); or (ii) using the mobile agent approach. If
we establish costs (delay introduced) for remote and local
message passing, as well as for the migration of the mobile
components involved, it is straightforward to decide which
approach is better. Suppose we have NShops shops, one
migrating component (that searches the shops sequentially),
NInteract interactions (messages) in each place, one message to
start the search and one message sent back to the customer with
the answers, it is straightforward to establish formulas for the
overall time of the distributed information retrieval application
example (i) using mobility:

TTM=(NShops×TM)+(((NShops× NInteract)+2)×TLM);
and (ii) using remote communications:

TTRC=(2×TLM)+(NShops×NInteract×TRM),
where TTM: Total time with mobility; TTRC: total time with
remote communications; TM: time for migration; TLM: time for
local message passing; and TRM: time for remote message
passing.)). Let us assume 10 units of time for TLM, 20 for TRM,
and 60 for TM. Figure 2 shows the total times for visiting 3, 6
and 9 shops having 2 to 30 message exchanges in each shop.

Figure 2. Performance analysis for the Market Application.

 However, we can analytically analyse only very simple
applications, with low degrees of concurrency, and abstracting
from various details. When applications are more complex and
we want to analyse their behavior in detail, then it is not trivial
to formulate these applications analytically.

To give an example, we have modeled the behavior of
active networks [21] with our abstractions. In such scenarios, we
have multiple nodes and multiple mobile components running,

various synchronization issues to deal with, and also various
aspects which are of interest to be analysed (number of capsules
in a node in a given time, average time for a capsule be served in
a node, average migration times, capsules lost, etc.). Having the
ability to simulate our specifications, easily obtaining also
performance measures, makes it possible to investigate more
complex situations, in a degree of abstraction that may satisfy
our expectations, and turning analysis process much more
comfortable to the developer.

4 CODE GENERATION FOR MOBILE
APPLICATIONS

Given a formal specification of a system in OBGG, it is
essential to have a way of translating this specification into a
programming language to be able to generate executable code.
This translation, however, is not simple because it requires the
maintenance of the system properties defined in the
specification.

To accomplish the objective of translating a formal
specification into executable code for mobile applications, we
started from the translation proposed in PLATUS simulator,
discussed in the previous section. According to this translation,
entities are described as Java classes. Each entity has and
manages a buffer of received messages and creates threads to
execute the rules to handle the received messages. Rules are
described also by Java classes, where it is defined what message
they can handle, what are the conditions that have to be satisfied
in order to execute these rules and the transformations in the
system state graph performed by their execution.

In a simulated situation, the time, and therefore all events in
the system, are ruled by the simulation algorithm. In this
process, the kernel plays the important role of passing events
(messages) between entities, and of giving a temporal coherence
to these events. The goal is to resemble the times of a real
situation. In a real situation the events of the system are
naturally ordered in time as they occur. Messages can be passed
directly from entity to entity as they are generated.

So, our first step to generate a real application out of an
OBGG specification is to take the same mapping of OBGGs to
Java classes established for simulation, but excluding the
simulation time control aspects and excluding the message
passing functionality of the simulation kernel, having entities
communicating directly. To do this for a distributed scenario, we
have adopted a support platform that ensures distribution
transparency and FIFO (first-in-first-out) semantics for message
delivery, therefore keeping the kernel semantics for message
passing. The chosen platform was Voyager from ObjectSpace,
Inc [18]. This is a platform totally developed in Java and that
provides the necessary support for distributed communication
with location transparency, and component mobility with
reference resolution. Although we have used this specific
platform, we have conceived the modifications in the code to
easily allow the implementation to be ported to other support
platforms2.

The behavior discussed above does not consider mobility
aspects. The next important aspect to be introduced is the
implementation of real entity migration. This can be
decomposed in the following sub-aspects:

1. stop the entity in the origin place;
2. a) save internal state as well as b) execution state;
3. transfer it to the destination;

2 Various platforms are analogous, concerning the support used.

4. resolve references - i.e. the migrating entity continues
 to be addressed from other entities;
5. resume the entities activities at the destination.
To implement this, we have used a mobility support

platform (the same mentioned above for distributed execution)
which is able to migrate passive Java objects (without internal
activities) between distinct locations where the support platform
has been deployed. The platform supports step 2.a (saves only
the internal state of the object that represents the entity), 3 and 4.
In order to handle with active objects (an object with internal
activities - one or more threads), which is the case for entities,
we have to build the support for steps 1, 2b and 5. To stop the
entity, we have to stop the internal thread (that launches rule
processing threads when messages are received) and the threads
that are executing rules. That is, we must guarantee that
messages will not be processed by the entity, no rules are under
execution and no rules will start execution before the move
process has finished. When there are no more active threads in
the entity, the move process supported by the platform is
performed (steps 2.a, 3 and 4). Step 5 was also implemented:
when the entity has been migrated to the destination by the
platform, the internal thread is restarted. With this, the entity
resumes its operation in the point it was stopped, starting to
process the messages that were not handled at the former place.
Since the platform assures that messages are delivered, without
losses, even the destination entity is moving. The behavior
above described was implemented in the specialized entities
Place and Mobile Component, which use the support platforms
functionality. This way, the developer creates his/her mobile
application by defining application specific entities which
extend the provided basic behavior of Place or Mobile
Component as specified in Section 2.

5 CONCLUSIONS AND FUTURE WORKS

The presented work is still in evolution but the created tools
(the specification language, the simulator and the code
generation) are already a good support for the development of
mobile applications. These tools have been enhanced by the
realization of tests involving some specific characteristics of this
kind of application, like remote communication, synchronization
and mobility of entities, and concurrent access to entities.

Some examples of mobile applications were developed to
test the code generation proposed. The results obtained in the
execution of the generated code are coherent to the simulation
results and to the formal specification of the applications. The
development of these example applications included the
specification of the application in OBGG, the translation of the
specification into simulation code, the simulation of the
application to test its behavior, the translation of the simulation
code into executable code and the execution of the generated
code. It is also possible to translate the specification directly into
executable code, without translating this into simulation code.
The use of simulation is, however, useful in most cases.

The ongoing work considers the development of more
complex case studies in order to test and validate the idea of
using the formalism, the simulator and the code generation as
proposed. Besides this, efforts have been invested to create a
tool for the formal verification of specifications in OBGG and to
obtain a formal proof that the code generated maintains the
graph grammar semantics.

As one could read in this paper, the place and mobile
component abstractions define the expected communication and
migration characteristics. The definition of these abstractions
reflects the expected environment for mobile applications. We

could modify such abstractions to represent other types of
environments. One possibility is to represent the existence of
failures, like messages that do not arrive in their destinations,
places that can be temporarily down, etc. Although this is an
open issue, we believe it is possible to use this flexibility to
modify the represented environment and to specify wireless
environments, where some characteristics like bandwidth,
availability and latency could change over the time.

6 REFERENCES
[1] AGHA, G., KIM, W. Actors: A unifying model for parallel

and distributed computing. Journal of Systems Architecture
45, 1999, pp. 1263-1277.

[2] ASSIS SILVA, F.M. A Transaction Model based on Mobile
Agents. PhD Thesis. Technical University Berlin. FB-
Informatik.1999.

[3] CARDELLI, L., GORDON. A., Mobile Ambients -
Foundations of Software Science and Computational
Structures, LNCS, vol.1378, Springer, 1998, pp. 140-155.

[4] COPSTEIN, B., MÓRA, M. C., RIBEIRO, L. An
Environment for Formal Modeling and Simulation of
Control Systems. 33rd Annual Simulation Symposium, SCS,
2000. p.74-82.

[5] CORRADINI, A.. Concurrent Computing: From Petri Nets
to Graph Grammars. Electronic Notes in Theorical
Computer Science 2, Proc. of the SEGRAGRA95
Workshop on Graph Rewriting and Computation, 1995. p.
245-260.

[6] DE NICOLA, R., FERRARI, G., PUGLIESE, R.. KLAIM: a
Kernel Language for Agents Interaction and Mobility,
Transactions on Software Engineering, vol. 24, nº 5, IEEE
Computer Society, 1998. p. 315-330.

[7] DOTTI, F. L., RIBEIRO, L. Specification of Mobile Code
Systems Using Graph Grammars. Formal Methods for Open
Object-Based Distributed Systems IV, Kluwer Academic
Publishers, Stanford, USA, 2000. p. 45-63.

[8] DUARTE, L. M., DOTTI, F. L. Developing Correct Mobile
Agent Applications. (portuguese) In: III Workshop de
Comunicação Sem Fio e Computação Móvel, 2001, Recife.
Anais do III ... Recife: Centro de Informática - Universidade
Federal de Pernambuco, 2001. v.1. p.10 - 17. In conjunction
with the 3rd IEEE International Conference on Mobile and
Wireless Communication Networks (MCWN2001).

[9] FUGGETA, A., PICCO, G. P., VIGNA, G. Understanding
Code Mobility. IEEE Transactions on Software
Engineering, v. 24, 1998. p.342-361.

[10] FUGIMOTO, Richard. Parallel Discrete Event Simulation.
Communications of the ACM, New York, vol. 33, n. 10,
October 1990, pp. 31-53.

[11] FUGIMOTO, Richard, NICO, David. State of Art in
Parallel Simulation. In Winter Simulation Conference
(WSC´92), Arlington, Proceedings..., SCS, 1992, pp. 246-
254.

[12] FUGIMOTO, Richard. Parallel and Distributed Simulation
Systems.NY, John Wiley & Sons, 2000.

[13] GOLDSZMIDT, G., YEMINI, Y.. Distributed Management
by Delegation. In Proceedings of 15th Int. Conf. On
Distributed Computing, 1995.

[14] GOSLING, J., MCGILTON, H. The Java Language
Environment - A White Paper. SunMicrosystems, 1996.

[15] MAIA, M., BIGONHA, R. Interaction based semantics for
mobile objects, In Proc. of the III Brazilian Symposium on
Programming Languages, 1999.

[16] MILNER, R., PARROW J. A calculus for mobile processes
I, Information and Computation, vol. 100, 1992, p. 1-40.

[17] MILNER, R, PARROW J., WALKER, D. A calculus for
mobile processes II, Information and Computation, vol.
100, 1992, pp. 41-77.

[18] OBJECTSPACE. Voyager ORB 4.0 Developer Guide.
Objectpace, Inc. 2000.

[19] PERDIKEAS, M., CHATZIPAPADOULOS, F.,
VENIERIS, I. and MARINO, G. Mobile Agent Standards
and Available Platforms, Computer Networks, vol. 31,
1999, pp. 1999-2016.

[20] PIERCE, B. and TURNER, D. Pict: a programming
language based on the pi-calculus, Tech. Report 476,
Indiana University, 1997.

[21] PSOUNIS, K.. Active Networks: Applications, Security,
Safety and Architectures. IEEE Communications Surveys,
1999.

[22] RIBEIRO, Leila, COPSTEIN, Bernardo. Compositional
construction of simulation models using graph grammars.
Lecture Notes in Computer Science, v.1779, p.87-94,
2000.

[23] RIBEIRO, L.. Parallel Composition and Unfolding
Semantics of Graph Grammars. Ph.D. thesis, Technical
University of Berlin, Germany, 1996.

[24] RIBEIRO, Leila. Parallel composition of graph grammars.
Applied Categorical Structures, v.7, n.4, p.405-430, 1999.

[25] WOJCIECHOWSKI, P., SEWELL, P. Nomadic Pict:
language and infrastructure design for mobile agents, In
Proc. of the ASA/MA99, 1999.

	Abstract
	1 INTRODUCTION
	2 FORMAL SPECIFICATION OF MOBILE APPLICATIONS
	3 THE SIMULATION ENVIRONMENT
	4 CODE GENERATION FOR MOBILE APPLICATIONS
	5 CONCLUSIONS AND FUTURE WORKS
	6 REFERENCES

