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Abstract 
Mobile applications are composed by software components that 
may migrate through the nodes of a network. Migration is 
controlled by the software developer, being part of the 
applications functionality. There are various potential 
application fields for this new technology. However, developing 
mobile applications is a difficult task since they are not only 
distributed and concurrent, but also mobile. This increases the 
complexity of testing in real conditions, where one cannot be 
sure whether an error is a result from the mobile application or 
from the environment in which it runs (e.g. the Internet). 
Simulation is used in this work as a means for testing models of 
mobile applications, such that the developer may check if the 
model behaves as expected under known environment 
conditions that can be chosen. We use a formal specification 
language for mobile applications that is based on graph 
grammars. The entities of a model according to this formalism 
can be simulated and code can be generated to build a real 
application. This paper describes the specification formalism, 
the code generation approach, and the simulation environment in 
more detail. Parts of a specification of a mobile application that 
has been simulated and executed are given as examples. 
  
1 INTRODUCTION 
 The fast and continuous growth in processing and 
communication capabilities led to massively distributed 
computational environments, e.g. the Internet. These 
environments are often called open environments, being 
characterized by: massive geographical distribution; high 
dynamics (appearance of new nodes and services); no global 
control; partial failures; lack of security; and high heterogeneity 
[2]. Building distributed applications for such environments is a 
complex task. Research efforts have been directed to manage 
this complexity through the development of new paradigms, 
theories and technologies for distributed applications. Within 
this context, code mobility [9] has received special attention due 
to its flexibility and potential use in various application fields 
[2]. 
 In traditional distributed systems, interacting components 
are primarily static, i.e., a component remains on the same 
location during its whole life-cycle and interactions with other 
components take place by exchanging messages through the 
communications network [2]. Code mobility can be defined as 
the capability of dynamically changing the location of an 
executing component. Migration is not transparent to the 
distributed software developer, it is instead explicitly handled by 
him/her as part of the application's functionality. Under the 

various paradigms enabled by code mobility [2], the Mobile 
Agent one is very promising and also investigated because of the 
agents mobility autonomy: a mobile agent is able to stop its 
execution on a location, migrate through the network carrying 
its internal state, and resume its execution on another location. 
Currently there are standards, platforms and languages available 
for mobile code [19]. However, there are still problems to be 
addressed in order to build a sound support for mobile code. 
Most of these issues are related to what is called controllability 
of agent-based activities in [2], involving support to the 
generation of correct mobile code applications and support to 
the reliable execution of mobile applications.  
 Simulation models may be very useful for the development 
of mobile applications as a specification and testing means. 
These models may be used to check if the components of an 
application behave as expected, if they are independent from 
each other such that the replacement of a simulated component 
by a more sophisticated version becomes possible, and also to 
check the applications behavior under various environment 
conditions (e.g. failure simulation). The main advantage of 
developing a mobile application using a simulation model is the 
possibility to validate strategies as well as control algorithms. If 
the simulation model is described using formal specification 
there is also the possibility of performing verification techniques 
to guarantee that the required properties of the system are 
fulfilled.  
 In the context of project ForMOS we are following an 
approach for the development of correct mobile applications that 
relies very much on simulation, among other methods and tools. 
Our approach involves: a formal specification language with 
abstractions that allow the representation of places and mobile 
agents (and their inherent mobility across places) [7]; a 
straightforward mapping of models written according to this 
formalism to entities of a simulation environment; the event 
driven simulation environment, which supports the abstractions 
of places and mobile agents; and another mapping of models 
written using this formalism to entities of a real application, 
running on top of a mobility support platform [8]. Verification 
tools and methods are under investigation to be integrated to our 
approach.  
 In this paper we briefly present the specification formalism 
and the code generation facility for mobile applications 
specified following this formalism; and discuss in more detail 
about the importance of simulation for mobile applications, as 
well as present a simulation environment and some simulation 
cases with mobile applications.  
 This paper is organized as follows: Section 2 presents the 
specification formalism; Section 3 discusses the simulation 
environment; Section 4 presents the code generation approach, 
through which we generate mobile applications to run on top of 



a commercial mobility support platform; finally, Section 5 
brings us to the conclusions and future works. 
 
2 FORMAL SPECIFICATION OF MOBILE    

APPLICATIONS 
When considering mobile code applications, complex 

distribution aspects, like location and mobility, communication, 
security, and, in some cases, failures, have to be taken into 
consideration during system design. Therefore, it is necessary to 
provide the designer with abstract constructions to specify and 
reason about those aspects. Starting with the Pi-calculus [16, 
17], there has been some efforts towards computational models 
for mobile systems, e.g. based on abstract state machines [15], 
on Mobile Ambients [3], and on Actors [1]. However, to be used 
in practical applications, high-level specification languages as 
well as programming languages whose semantics can be 
described using such models must be provided. There are some 
proposals of such programming languages (e.g. KLAIM [7], Pict 
[20], Nomadic Pict [25]), but on the level of specification there 
is still no formal method that is largely used for mobile 
applications.  

A formal specification language allows the non ambiguous 
description of a system, using well-defined syntax and 
semantics. The formal specification language used in this work, 
is based on the restricted form of graph grammars called Object-
Based Graph Grammars [7]. Besides being a visual language, 
the object based style adopted is familiar to most developers, 
making the formalism easier to be understood, used and 
analyzed, being also closer to implementation languages that 
follow the object-oriented paradigm. OBGGs were extended in 
[7] to become a suitable specification technique for mobile code 
applications. This extension introduced the notions of locality 
and mobility. Here, we briefly present this formalism. 

An application is composed by a set of instances of entities. 
Roughly speaking, each entity corresponds to a class: it specifies 
a type of object, its internal state, types of messages it may 
respond to and send, and the behavior of instances of this entity 
when receiving a message. Moreover, to be able to simulate and 
verify each entity separately, the entity has also an interface 
description, that consists of an abstract description of the 
behavior of the entity itself (the export interface) and an abstract 
description of the behavior of entities used by this entity (the 
import interface). Each of these three components of an entity 
(behavior, import and export) is described by an OBGG. The 
existence of description of behavior in the interfaces makes it 
possible to check, when building an application by composition 
of entities, whether the assumed behavior of one entity (import 
interface) is in accordance with the corresponding actual 
behavior of the used one (export interface). Due to space 
limitations, we here we will concentrate on the behavior of each 
entity. 

An OBGG has three components: a type graph, and initial 
graph and a set of rules. The type graph specifies the kinds of 
entities, attributes, messages and parameters that will be used in 
the description of an entity. The initial graph describes the initial 
state of instances of that entity. The rules specify the behavior of 
the instances of the entity. The behavior is always triggered by 
the receipt of a message. The application of rules successively 

changes the state of the system, starting from the initial state. A 
rule can be applied whenever the left-side of the rule is a sub-
graph of the current system state graph, this is called a match or 
occurrence of the rule. When applied, the rule brings the system 
to a new state defined as: Items in the left-side that are not 
present in the right-side are deleted; items in the right-side that 
are not present in the left-side are created; and items that are 
present in both sides of the rule are preserved. 

Two (or more) enabled rules are in conflict if their matches 
need write access to common items. Many rules may be applied 
in parallel, as long as they do not have write access to the same 
items of the state (even the same rule may be applied in parallel 
to itself, using different matches).  
 To represent mobile applications, two specialized entities 
were defined: places and mobile components. These entities 
capture the basic behavior concerning communication and 
mobility. Places represent the possible locations where mobile 
components may execute, offering basic functions as storage, 
communication and computational power, and access to 
services. Furthermore, places offer message passing and move 
services to mobile components. Mobile components represent 
software components that may migrate from place to place 
during their execution, using resources and services from the 
places they visit. When creating a mobile application, the user 
may use the entity place (but he/she is not allowed to modify 
this entity), and specialize the entity mobile component as 
he/she wants. This will be illustrated in the following example. 
 Suppose a Mobile Component (MC) that shall visit 3 
market Places (P_1 to P_3). In each place, MC asks for the 
name of an Information Service (IS) in that place and then asks 
that IS for the price of a specific product. At the end of the 
journey, MC returns to the origin carrying the information about 
the place that has the best (smallest) price and informs that to the 
Customer. Figure 1.a shows a the (partial) specification of this 
entity. This MC-TypeGraph graph specifies the types of the 
attributes and messages of this entity. For example, an instance 
of MC has 7 attributes: 3 belonging to pre-defined data type sets, 
3 of type place and one of type customer entity. The elements 
below the dashed line indicate imported items, whereas the ones 
above this line are the internal state and messages treated by this 
entity. The initial graph MC-InitGraph indicates the initial state 
of the attributes when one instance of this entity is created. The 
gray elements denote instantiation variables. Some of the rules 
of the specification of this entity are shown. Again, the ones 
above the dashed line correspond to the specification of the 
behavior of this entity, and the ones below to the expected 
specification of the imported (or used) entities (the export 
interface is not shown). For example, rule AskNext specifies that, 
when receiving a Price message with a price that is slower that 
the best recorded price (r<b), and having more places to visit 
(n!=0), the MC component updates its attributes concerning the 
value and address of the best price (bestPrice and bestPrLoc) 
and asks its location where to go next. Rule ReqMove specifies 
that, when sending a message to an instance of Place, MC 
expects to receive a message Continue in return (another rule not 
shown here specifies the expected message when the movement 
did not succeed). 



(a) 
 

 (b) 
 

Figure 1. (a) Specification of the MC entity; (b) Model for the Market Application. 
 
 
 Figure 1.b shows an example of model for this application. 
This is obtained as a composition of the necessary instances of 
all entities involved. The restrictions put on the kinds of rules, 
import and export interfaces (see [5]) guarantee that the 
semantics of the entities is compositional [22, 24], that is, the 
behavior of each entity is preserved within the whole system. To 
simulate this model, we just have to use the descriptions of 
behavior described within each entity (here we do not use the 
import and export interfaces anymore, they are used just to aid 
building a consistent model). 

 

3 THE SIMULATION ENVIRONMENT 
 Simulation models can be very useful as a means of 
specification and test of a system. They provide a simplified 
representation of the system, allowing its analysis. The main 
advantage of using simulation in this work is the possibility of 
validating a project strategy before implementing the system. 
Simulating the execution of the system, one can find errors that 
would be hardly identified when testing the real system 
execution, specially if one consider open systems with mobile 
components. Important time and performance aspects can also 



be considered without actual implementation of the system. 
More details on these aspects can be found in Section 3.3.   
 The simulator developed in the PLATUS project [4], using 
the Java language [14], allows one to simulate models described 
in OBGG. This simulator works with entities, which are the 
system components, corresponding to the OBGG entities, and 
messages, which are the means of communication between 
entities. The mapping from OBGGs specifications to simulator 
entities is straightforward. Graphic tools are under development 
to allow the graphical creation of simulation models and their 
automatic conversion to the corresponding simulation code. 
 
3.1 Simulation of OBGGs 

In this section we discuss how an object-based graph 
grammar model as presented in Section 2 can be simulated. For 
this, we will need some definitions: Given an entity E, a rule r of 
E and a message m sent to E 
 - tmin(m) is the minimum time in which the message m  can 
be treated (that is, m.tmin+T, where T is the current time);  
 - tmax(m) is analogous to tmin(m)  for the maximum time;  
 - trigger(r) is the name of the message treated by rule r; 
 - readAtr(r) is the set of (names of) attributes of E that are 
read-only for rule r (i.e., items that are preserved by this rule);  
 - writeAtr(r) is the set of attributes of E that may be 
modified by rule r (items that are deleted/created/modified); 
 - condition(r) is a (boolean) condition that must be satisfied  
by a rule to be applied. Typically, this condition is defined by 
some requirement on the values of the attributes used by the 
rule.  

 
Each state of a computation described by a graph grammar 

is a graph that contains instances of entities (with concrete 
values for their attributes), messages to be treated, and the 
current time (simulation entity). In each execution state, several 
rules may be enabled (and therefore are candidates for execution 
at that instant in time). 

 
Enabled Rule: A rule r is enabled  in a state S by an instance m 
if m is of type trigger(r), m belongs to state S, each attribute  in 
readAtr(r) have the necessary value in S, each attribute in 
writeAtr(r) have the necessary value in S, and condition(r) is 
true in S. In this case, the pair (r,m) is a candidate for rule 
application.  
 
Rule Application: A pair (r,m) can be applied if r is enabled by 
m. The effect of this rule application is that all attributes of 
entity E in writeAtr(r) will receive the new values described by 
the rule, message m will be deleted and the new messages 
described in the right-hand side of the rule will be created. 
Nothing else in the state is modified by this rule.  
  Rule applications only have local effects on the state. However, 
there may be several rules competing to update  the same 
portion of the state. To determine which set of rules will be 
applied in each time, we need to choose a set of rules that is 
consistent, that is, in which no two or more rules have write 
access to the same resources. For this we will use the concept of 
conflict: 

 
Conflict: A rule application (r,m) is in conflict with a rule 
application set R if writeAtr(r) ∩ writeAtr(R) ≠ ∅ (where 
writeAtr(R) is the union of all write attributes of rules in R).  

 

Note that, in this definition, we do not consider many read 
accesses with one write access as a conflict. Therefore, these 
rules may be applied in parallel. This choice is in accordance 
with the true concurrency semantics model of Graph Grammars 
[23] and it allows for a high parallelism degree in our system. 

 
3.2 The Simulation Algorithm 

Summarizing the definitions until now, an object-based 
graph-grammar specification can be seen as a set of entities 
executing in a collaborative way. Each entity keeps its particular 
state and communicates with others by message passing. The 
behavior of each entity is described as a set of rules. More than 
one rule may be candidate to treat one message, but only one 
will be triggered per message. The selection follows a uniform 
distributed random function. The execution of a rule may change 
the values of the entity's attributes, create new entities and 
generate new messages. 

Analyzing the model characteristics we conclude that an 
object-based graph-grammar model is a discrete-state system: 
the state of the entities change as rules are executed in response 
to the messages. The use of discrete-event simulation is thus a 
natural approach to model evaluation of such systems.  

In the literature, many approaches for the execution of 
discrete-event models were discussed. We may use a fixed-step 
or event-driven [10] time advancing mechanism and, in an 
orthogonal view, we may use a single threaded or a multi-
threaded (parallel) [12] execution approach. Once parallelism is 
an intrinsic property of graph-grammars, the multi-thread 
approach seems to lead to a faithful representation of the 
behavior of such systems. An interleaving approach, as would be 
necessary to model parallelism in the single thread approach, 
would lead to a much more complex implementation, mainly 
due to the fact that some rule applications that may occur in 
parallel cannot be sequentialized in any order preserving the 
same semantics. 

In the same way the event-driven time advancing 
mechanism is a natural choice because the fixed step approach is 
useful only for a specific set of problems where a fixed step for 
time advancing is easily identified. 

The simulation of discrete events uses a list of messages (or 
events) sorted by time-stamp, known as event list (EVL). The 
process of simulation consists in selecting the event (or events) 
with the smallest time-stamp, executing it (them) and advancing 
the simulated time. There is only one variable that corresponds 
to the simulated or virtual time. 

For the parallel simulation, the system to be simulated is 
divided into modules to be executed in parallel. To each module, 
a logical process (LP) is associated. Each LP can work with the 
evolution of its own processing time, keeping its own Local 
Virtual Time (LVT). The set of all LVTs define the Global 
Virtual Time that represents the advancement of the simulated 
time. Data exchange between LPs, however, implies the need of 
synchronization of communication mechanism and clocks [10, 
11, 12]. There are two main approaches to achieve this 
synchronization: the so called conservative approaches and the 
optimistic approaches. The conservative approaches are based 
on the idea that an event may only be triggered when it is safe to 
do it, meaning that the involved LPs are correctly synchronized 
and, consequently, Local Causality Constrains (LCC) problems 
are not allowed [10]. Optimistic approaches do not assure that it 
is safe to execute an event. When an LCC problem occurs, 
recovery procedures are executed to bring the system into a safe 
state.  



The simulator must ensure that the graph grammars 
formalism is faithfully simulated. Once the formalism allows 
that all entities may execute at the same time, a multi-threaded 
approach seems to be the best choice. Moreover, within an 
entity, all non-conflicting enabled rules may be applied in 
parallel. Due to the encapsulation imposed by the object-based 
modeling, there can be no conflicts among entities.). By 
analyzing the dependencies among enabled rules, we can 
construct a set of non-conflicting enabled rules out of an 
arbitrary set of enabled rules. Messages that cannot be treated in 
the current time due to such conflicts must be posted again later. 
If it is not possible to post the message again (because the 
maximum time would be exceeded), the simulation shall be 
aborted as there was an specification error: it is not possible to 
treat the messages within the times they were specified. The 
proposed algorithm uses a simplified version of a conservative 
approach adapted to our needs. 

Each entity in the model is mapped to a LP. This LP is 
responsible for the selection of the messages that may be treated 
in the current time, the choice of the rules that may be activated 
to treat these messages, and the selection of the set of rules that 
will effectively be triggered. For each triggered rule, a new LP 
will be created. This LP has a short life, ending when the 
execution of the rule ends. This assures a high degree of 
parallelism among the rules that may be triggered in the same 
entity (and consequently in all entities) in a specific point in 
time.  

For simplicity, however, we keep only one centralized 
clock. So all the entities are synchronized by this clock and the 
degree of parallelism is restricted to those rules that occur at the 
same time. This is not very efficient if we think about processing 
time, but is enough to assure the correct simulation of the model 
and is a good base to improve the algorithm in the future.  

Once the clock is unique, we have a kernel. The kernel is a 
special entity that keeps the EVL and the simulated clock. It is 
also an LP. When an entity wants to send a message to any other 
entity (including itself), it must send the message to the kernel. 
The scheduler will insert the message in the EVL sorted by time 
stamp. Each time the clock advances, all messages whose 
tmin(m) ≥ T, where T is the current time, are sent to their target 
entities. This way an entity's EVL stores only messages that may 
be selected for execution in the current time. In each time, all 
entities will empty their EVLs. The time will advance only when 
all triggered rules stop to execute. 

 
3.3 Simulation of Mobile Applications 

As stated in Section 2, we have represented mobile 
applications in terms of OBGGs. To do this, specialized entities, 
namely Place and Mobile Component, were specified using 
OBGGs. The created entities follow the behavior described in 
Section 2. Mobile Components are assigned to a Place and may 
migrate among Places. With these abstractions, mobile 
applications can be modeled. The developer uses (specializes) 
these abstractions to represent the specific entities of the 
application scenario. 

Since the simulator supports the simulation of OBGG 
models, and since mobile applications can be represented using 
OBGG, it is therefore possible to simulate mobile applications. 
We have used the simulator to test the behavior of various 
applications, including the market application presented in 
Section 2 and currently also a model for active networks. 

The tool proved to be valuable since relevant specifications 
errors could be found during the specification phase, like for 

instance: sending to an entity a message that is not treated by  
that entity; wrong definition of conditions of a rule resulting that  
the rule was never applied, or always applied; and deadlock 
situations, among others.  

Besides the use of simulation as a tool to test specifications, 
it can also be used to analyze the expected performance of the 
application. Assigning times to local and remote message 
delivery as well as to the migration of a software component 
allows the developer to represent the latency of network links, 
the amount of time necessary to transfer a mobile component or 
other time consuming operations, making it possible to compare 
the performance of different approaches and strategies of 
distribution and mobility in complex scenarios. 

Our simple application scenario can be analysed 
analytically. Supposing we focus on one aspect to be 
investigated: to decide which implementation approach should 
be followed, regarding the best time of response, among the two 
different approaches to implement the search for best price: (i) 
using a traditional remote communication means (e.g. remote 
procedure call - RPC); or (ii) using the mobile agent approach. If 
we establish costs (delay introduced) for remote and local 
message passing, as well as for the migration of the mobile 
components involved, it is straightforward to decide which 
approach is better. Suppose we have NShops shops, one 
migrating component (that searches the shops sequentially), 
NInteract interactions (messages) in each place, one message to 
start the search and one message sent back to the customer with 
the answers, it is straightforward to establish formulas for the 
overall time of the distributed information retrieval application 
example (i) using mobility:  

TTM=(NShops×TM)+(((NShops× NInteract)+2)×TLM); 
and (ii) using remote communications:  

TTRC=(2×TLM)+(NShops×NInteract×TRM),  
where TTM: Total time with mobility; TTRC: total time with 
remote communications; TM: time for migration; TLM: time for 
local message passing; and TRM: time for remote message 
passing.) ). Let us assume 10 units of time for TLM, 20 for TRM, 
and 60 for TM. Figure 2 shows the total times for visiting 3, 6 
and 9 shops having 2 to 30 message exchanges in each shop. 

 

 
Figure 2. Performance analysis for the Market Application. 

 However, we can analytically analyse only very simple 
applications, with low degrees of concurrency, and abstracting 
from various details. When applications are more complex and 
we want to analyse their behavior in detail, then it is not trivial 
to formulate these applications analytically.  

To give an example, we have modeled the behavior of 
active networks [21] with our abstractions. In such scenarios, we 
have multiple nodes and multiple mobile components running, 



various synchronization issues to deal with, and also various 
aspects which are of interest to be analysed (number of capsules 
in a node in a given time, average time for a capsule be served in 
a node, average migration times, capsules lost, etc.). Having the 
ability to simulate our specifications, easily obtaining also 
performance measures, makes it possible to investigate more 
complex situations, in a degree of abstraction that may satisfy 
our expectations, and turning analysis process much more 
comfortable to the developer. 

 
4 CODE GENERATION FOR MOBILE 
APPLICATIONS 

Given a formal specification of a system in OBGG, it is 
essential to have a way of translating this specification into a 
programming language to be able to generate executable code. 
This translation, however, is not simple because it requires the 
maintenance of the system properties defined in the 
specification.  

To accomplish the objective of translating a formal 
specification into executable code for mobile applications, we 
started from the translation proposed in PLATUS simulator, 
discussed in the previous section. According to this translation, 
entities are described as Java classes. Each entity has and 
manages a buffer of received messages and creates threads to 
execute the rules to handle the received messages. Rules are 
described also by Java classes, where it is defined what message 
they can handle, what are the conditions that have to be satisfied 
in order to execute these rules and the transformations in the 
system state graph performed by their execution. 

In a simulated situation, the time, and therefore all events in 
the system, are ruled by the simulation algorithm. In this 
process, the kernel plays the important role of passing events 
(messages) between entities, and of giving a temporal coherence 
to these events. The goal is to resemble the times of a real 
situation. In a real situation the events of the system are 
naturally ordered in time as they occur. Messages can be passed 
directly from entity to entity as they are generated.  

So, our first step to generate a real application out of an 
OBGG specification is to take the same mapping of OBGGs to 
Java classes established for simulation, but excluding the 
simulation time control aspects and excluding the message 
passing functionality of the simulation kernel, having entities 
communicating directly. To do this for a distributed scenario, we 
have adopted a support platform that ensures distribution 
transparency and FIFO (first-in-first-out) semantics for message 
delivery, therefore keeping the kernel semantics for message 
passing. The chosen platform was Voyager from ObjectSpace, 
Inc [18]. This is a platform totally developed in Java and that 
provides the necessary support for distributed communication 
with location transparency, and component mobility with 
reference resolution. Although we have used this specific 
platform, we have conceived the modifications in the code to 
easily allow the implementation to be ported to other support 
platforms2. 

The behavior discussed above does not consider mobility 
aspects. The next important aspect to be introduced is the 
implementation of real entity migration. This can be 
decomposed in the following sub-aspects:  

1. stop the entity in the origin place;  
2. a) save internal state as well as b) execution state; 
3. transfer it to the destination; 

                                                           
2 Various platforms are analogous, concerning the support used. 

4. resolve references - i.e. the migrating entity continues 
  to be addressed from other entities; 
5. resume the entities activities at the destination. 
To implement this, we have used a mobility support 

platform (the same mentioned above for distributed execution) 
which is able to migrate passive Java objects (without internal 
activities) between distinct locations where the support platform 
has been deployed. The platform supports step 2.a (saves only 
the internal state of the object that represents the entity), 3 and 4. 
In order to handle with active objects (an object with internal 
activities - one or more threads), which is the case for entities, 
we have to build the support for steps 1, 2b and 5. To stop the 
entity, we have to stop the internal thread (that launches rule 
processing threads when messages are received) and the threads 
that are executing rules. That is, we must guarantee that 
messages will not be processed by the entity, no rules are under 
execution and no rules will start execution before the move 
process has finished. When there are no more active threads in 
the entity, the move process supported by the platform is 
performed (steps 2.a, 3 and 4). Step 5 was also implemented: 
when the entity has been migrated to the destination by the 
platform, the internal thread is restarted. With this, the entity 
resumes its operation in the point it was stopped, starting to 
process the messages that were not handled at the former place. 
Since the platform assures that messages are delivered, without 
losses, even the destination entity is moving. The behavior 
above described was implemented in the specialized entities 
Place and Mobile Component, which use the support platforms 
functionality. This way, the developer creates his/her mobile 
application by defining application specific entities which 
extend the provided basic behavior of Place or Mobile 
Component as specified in Section 2.   

 
5 CONCLUSIONS AND FUTURE WORKS 

The presented work is still in evolution but the created tools 
(the specification language, the simulator and the code 
generation) are already a good support for the development of 
mobile applications. These tools have been enhanced by the 
realization of tests involving some specific characteristics of this 
kind of application, like remote communication, synchronization 
and mobility of entities, and concurrent access to entities.   

Some examples of mobile applications were developed to 
test the code generation proposed. The results obtained in the 
execution of the generated code are coherent to the simulation 
results and to the formal specification of the applications. The 
development of these example applications included the 
specification of the application in OBGG, the translation of the 
specification into simulation code, the simulation of the 
application to test its behavior, the translation of the simulation 
code into executable code and the execution of the generated 
code. It is also possible to translate the specification directly into 
executable code, without translating this into simulation code. 
The use of simulation is, however, useful in most cases. 

The ongoing work considers the development of more 
complex case studies in order to test and validate the idea of 
using the formalism, the simulator and the code generation as 
proposed. Besides this, efforts have been invested to create a 
tool for the formal verification of specifications in OBGG and to 
obtain a formal proof that the code generated maintains the 
graph grammar semantics.   

As one could read in this paper, the place and mobile 
component abstractions define the expected communication and 
migration characteristics. The definition of these abstractions 
reflects the expected environment for mobile applications. We 



could modify such abstractions to represent other types of 
environments. One possibility is to represent the existence of 
failures, like messages that do not arrive in their destinations, 
places that can be temporarily down, etc. Although this is an 
open issue, we believe it is possible to use this flexibility to 
modify the represented environment and to specify wireless 
environments, where some characteristics like bandwidth, 
availability and latency could change over the time. 
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