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Abstract

Image matting aims at extracting foreground elements from an image bysméanlor and opacity (alpha) esti-
mation. While a lot of progress has been made in recent years on imgrthe accuracy of matting techniques,
one common problem persisted: the low speed of matte computation. Séatpitee first real-time matting tech-
nigue for natural images and videos. Our technique is based on the\atiger that, for small neighborhoods,
pixels tend to share similar attributes. Therefore, independently treatiniy piael in the unknown regions of a
trimap results in a lot of redundant work. We show how this computatiotveaignificantly and safely reduced by
means of a careful selection of pairs of background and foregroantptes. Our technique achieves speedups of
up to two orders of magnitude compared to previous ones, while proglhajh-quality alpha mattes. The quality
of our results has been verified through an independent benchifiaekspeed of our technique enables, for the
first time, real-time alpha matting of videos, and has the potential to enaldsvactass of exciting applications.

Categories and Subject Descriptgascording to ACM CCS)

Segmentation—Pixel classification

1.4.6 [Image Processing and Computer Vision]:

1. Introduction

Extraction and compositing of foreground objects are funda-
mental image and video editing operations. The process of
digital matting aims at accurately extracting foreground ob-
jects from images and videos. For this, matting techniques
need to estimate foregrounB) and backgroundR) colors

for all pixels belonging to an imade along with opacity @)
values. These values are related by tbenpositing Equa-
tion 1, where the observed col@; of pixel p is expressed

as a linear combination ¢, andBp, with interpolation pa-
rameter p:

@

Fornatural imagesF andB are not constrained to a particu-
lar subset of values. Thus, all variables on the right-hand side
of Equationl are unknown, making the problem of comput-
ing an alpha matte considerably harder.

Cp=0apFp+(1—ap)Bp.

Due to the highly ill-posed nature of the matting prob-
lem, most existing approaches require additional constraints
in the form of user input, either asimaps or scribbles
This user-supplied information identifies pixels for which
the opacity value; is known to be 1 or Oi.e., known fore-
groundandknown backgroungixels, respectively. The re-
maining unconstrained pixels are markeduagknown The

(© 2010 The Author(s)

Journal compilatiori© 2010 The Eurographics Association and Blackwell Publishitg
Published by Blackwell Publishing, 9600 Garsington Road,08kf0OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

goal of a digital matting algorithm is then to compute the
values ofap, Fp, andBp for all pixels labeled as unknown.

Matting techniques can be classified according to the un-
derlying method used for solving the mat®w/ 074, which
can be based osampling pixel affinities or a combination
of the two. Most recent matting algorithmSRRO9LLWO08,
RRGO08WCO07H fall in one of the last two categories, where
local affinities are employed in optimization steps for solv-
ing or refining the matte. This usually requires the solution
of large linear systems, whose sizes are directly proportional
to the number of unknown pixels ih and, thus, can be-
come quite big. Furthermore, these optimization procedures
solve fora independently of andB, thus requiring an ad-
ditional step for reconstructing and, if necessary, ald8.
Consequently, state-of-the-art techniques take from seconds
to minutes to generate alpha mattes for typical images (with
about 1 Megapixels), making the matte creation process a
tedious task. Long offline computations have also prevented
the use of natural scenes in real-time matting applications,
such as live broadcasting.

We present the first real-time matting technique for nat-
ural images and videos. Our approach is based on the key
observation that pixels in a small neighborhood tend to have
highly similar values fofa, F, B) triplets. Thus, a significant
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Figure 1. Example of alpha matte extraction and compositing using our techniqui) (rge 800 x 563 pixels) from the
training dataset provided byJRW 09]. (Center) Alpha matte computed with our technique in 0.043 secondg adinmap
with 40% of unknown pixels. (Right) Composite of the extracted foreground owdaekground.

amount of computation used to obtain the matte for neigh-
boring pixels is in fact redundant and can be safely elimi-
nated. We show how to avoid such unnecessary computation
by carefully distributing the work among neighboring pixels,
which will then share their results. Since the operations per-
formed by the pixels are independent, they can be performed
in parallel on modern GPUs. As a result, our approach can
generate high-quality mattes up to 100 times faster than the
previous techniques. The quality of our results have been
confirmed by the independent image-matting benchmark of
Rhemannret al. [RRW*09]. According to this benchmark,
our technique ranked second among current state-of-the-art
techniques. Figurd shows an example of an alpha matte
extracted with our technique in.@3 seconds for a chal-
lenging example taken from the training dataset provided by
Rhemannet al. [RRW*09]. When extended with an addi-
tional optimization step described in Sectidr?, our ap-
proach ranks first in the same benchmark, while still per-
forming at interactive rates.

We also introduce a new objective function for identify-
ing good pairs of background and foreground colors for any
given pixel p (Equation7). Our new function takes into ac-
count spatial, photometric, and probabilistic information ex-
tracted from the image. Such a function allows our approach
to achieve high-quality results while still operating on a con-
siderably small discrete search space.

called background or foregrourshmples The first tech-
nigue to use sampling for estimating the alpha values of
unknown pixels was proposed by Mishindig94]. Earlier
systems also include the work of Ruzon and Tom&3idd,
where alpha values are estimated using simple color distri-
butions. Bayesian mattin@€{CSS0] models the foreground
and background distributions with spatially-varying sets of
Gaussians and solves the matte usimgaximum a posteri-

ori (MAP) estimation.

Affinity-based approaches solve farindependent of the
estimation of foreground and background colors. The Pois-
son matting algorithm3JTS04 observes that if the fore-
ground and background colors are locally smooth, the gra-
dient of the matte can be estimated from the gradient of the
image. The matte is then found by solving Poisson equa-
tions, with boundary conditions defined by the trimap. The
Random Walks method of Gradst al. [GSAWO0] prop-
agates user constraints to the entire image by minimizing
a quadratic cost function. The Closed-form matting tech-
nique [LLWO08] solves the matte by minimizing a cost func-
tion derived from careful analysis of the matting problem.

Combined approaches mix an initial sampling step with
o-propagation methods. The recent Robust matting ap-
proach of Wang and CoheM{CO7H uses an initial sam-
pling step to adapt an energy function that is then minimized
using random walks. The authors discuss a way to calculate

Due to its speed, our technique has the potential to enable the confidence of the collected samples, and the computa-
new and exciting real-time applications that have not been tion only uses high confidence samples. The work of Rhe-
previously possible. We illustrate this potential by showing mannet al. [RRG0§ improves on this idea by proposing
the first real-time alpha matting demonstration for natural- new weights for the confidence metric. Furthermore, they
scene videos, and by providing real-time feedback to users improve the search for suitable foreground samples by as-
during interactive alpha-matting extraction sessions. suming that the foreground object is spatially connected.

Some algorithms use additional information to constrain
the matting problem. This extra information usually requires
especial conditions, such as capturing multiple images with
different focal depthsNIMP*05] or acquiring depth infor-

mation using a time-of-flight sensoETP*08].

2. Related Work

Sampling-based approaches make the assumption that th
true foreground and background colors of an unknown pixel
can be explicitly estimated by analyzing nearby known pix-

els (.e., pixels in the trimap’s known regions), which are Interactive alpha matting of images is typically performed
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using a two-step iterative process: first, the user refines the
needed constraintgrimap or scribbleg, which will then be
used for matte generation in a subsequent step. This proces
is repeated until the user is satisfied with the quality of the
matte. Any delay between successive evaluations of the first
step are enough to make this a time-consuming and tedious
process. The system proposed by Waaigal. [WACO7]

tries to avoid such a delay by noting that the user mod-
ifies the system constraints in a localized fashion. There-
fore, the matte only needs to be (re)computed for a small
portion of the image at a time. However, as noted by Rhe-
mannet al. [RRRASO0§, long or complex boundaries are
still monotonous and time-consuming to trace.

For segmentation and matting of videos, Bai and Sapiro
[BS07 use the geodesic distance — based on the short-
est path on a weighted graph — to interactively make soft
segmentation and matting of images and videos. The recent
work by Baiet al.[BWSS09 uses local classifiers to prop-

Sampling for Real-@ikipha Matting

3.1. Expansion of Known Regions

g“\ trimap T segments an input image (or video frame) into

three non-overlapping pixel regions: known foregroufd (
known backgroundTy) and unknownTy). The idea behind
expanding known regions is to exploit the affinity of neigh-
boring pixels to reduce the size of the unknown regions.
Thus, letDimage(p.d) and Deolor(P,d) be, respectively, the
image-space and color-space distances between two pixels
andg. The expansion process consists of checking for each
pixel p € Ty if there exists a pixetj € Ty (r = {f,b}) such
that Dimage( P, d) < ki, Deolor(P: @) < ke, andDimage( P, q) is
minimal for p. In such a case, pixglis labeled as belonging

to regionT; based on its affinity to pixaj € Tr. The value of

the parametek; depends on the unknown region size; thus,
larger images might require larger valueskof We found
thatk; = 10 pixels andkc = 5/256 units (measured as Eu-
clidean distance in the RGB unit cube) produce good results
for typical images. These values were used for all examples

agate a user defined segmentation across time. The authorshown in the paper and supplemental materials.

extend the work in[LWO08] by adding a temporal coher-
ence term to the cost function for generating mattes for of-
fline video sequences. None of these techniques, however,
are suitable for real-time alpha-matting of videos.

3. Real-Time Alpha Matting

Our technique for real-time alpha matting is based on the
fundamental observation that pixels in a small neighbor-
hood often have highly similar values for their tr(oe F, B)
triplets. From this, it follows that: (i) the initial collection
of samples gathered by nearby pixels differ only by a small
number of elements; and (ii) close-by pixels usually select
the same or very similar pairs for their best foreground and
background colors. This leads to the conclusion that per-
forming the alpha matte computation for each pixel indepen-
dently of its neighbors results in a large amount of redundant
work, which can be safely avoided without compromising
the quality of the matte. In fact, as demonstrated in Seetion
itis possible to achieve speedups of up to two orders of mag-
nitude while still obtaining high-quality results.

Our technique takes as input an imalgéor video se-
guence) and its corresponding trimap(s), and consists of the
following steps:

1. Expansion of Known Regions extrapolates “known
foreground" and “known background" regions of the
trimap into the “unknown" regions;

. Sample Selection and Matte Computation tries to
identify, for each pixel in the unknown regions, the best
pair of foreground and background samples. It also com-
putes an alpha matte from the obtained samples;

. Local Smoothing locally smooths the resulting matte
while maintaining its distinct features.

(© 2010 The Author(s)
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3.2. Sample Selection and Matte Computation

For each remaining pixep € Ty, our goal is to find an
(a,F,B) triplet that better modelp. For this, a sampling
strategy inspired by the work of Wang and Cohe/q074

is used, but it differs from theirs in some fundamental as-
pects. For any given pixgh € Ty, Wang and Cohen’s idea

is to collect a large number of foreground and background
samples in a neighborhood aroupdSuch samples are con-
sidered candidates for estimating the alpha value dheir
assumption is that the true foreground and background col-
ors should be close to the ones of some of the collected
samples. This is a reasonable assumption when the initial
sample set is large. For instance, in their approach, Wang
and Cohen analyze 400 pairs of foreground and background
colors for each pixep [WCO07H. Unfortunately, the use of
larger sample sets requires a significant amount of compu-
tation. The next sections show that this computational cost
can be significantly reduced by exploiting affinities among
neighboring pixels. Furthermore, a new and improved met-
ric for electing the best samples is presented, which takes
into account image parameters that were not considered in
the sample-selection process describedNCP7H.

We minimize the amount of work involved in finding the
best pairs of foreground and background samples for a set of
neighbor pixels by leveraging their high affinity. For this, we
first divide this task among the various pixels in the neigh-
borhood §éample gathering which then share and refine
their results ¢ample refinemejt

Sample Gathering in this stage, each pixqd € Ty selects

the best F, B) pair from a small set of samples in its neigh-
borhood. Those sets are gathered in a manner that guaran-
tees that sample sets from neighboring pixels are disjpint.
gathers at mostg background andg foreground samples
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fu\ [z [ [ 1] Minimization of chromatic distortion : Similar to what has

B : .====. been described by Wang and Coh#(07H, our approach
: - q> :: = favors the selection of pairs of foreground and background

colors that can model the color of pixplas a linear com-

1 bination of themselves. This is modeled by ttt@omatic
distortion Mp, whose value should be small for a good pair

of candidate colors:
Figure 2: The red arrows starting at p define the paths

for searching for background and foreground samples for p. Mp(F',B!) = [[Cp— (6pF' +(1-6p)B))|| (2

The selected (closest) samples are marked in orange. Pixel\ynare Cp is the color ofp, and Gp is the estimated al-

g explores a different path (in blue). Foreground samples are pha value forp, obtained using the color space projection

shown as squares, and background samples as circles. of Cp onto the line defined bFi andBi. Wang and Co-
hen WCO074 further divide Equatior2 by ||F' — B!|| —
which we do not do — to enforce a wide separation of the

(Figure2), resulting in at moské tested pairs, from which ~ foreground from the background colors. While their obser-

the best candidate is selected. vatiqn regarding _Iinear _interpolation_ is _intu_itively spunc_i ac-

) o ) cording to Equatiori, this second criterion is oversimplify-
Sample Refinementin this stage, each pixg € Ty ana- ing and does not address the fundamental issues involved
lyzes the choices (Wlt_hout r_ecomblnlng th_em_) of its (gt most) in the computation of a matte. As such, it does not rep-
k- spatially closest pixels iffu. Thus, while in practicep resent a good measure for comparison of candidate pairs.

performs (at mostké+kr pair evaluations, due to the affin-  p,q although a smaMp(F',Bl) is necessary for accu-
ity among neighbgr pixels, this is roughly equivalent to per- rately representing the alpha value pfit is not a suffi-
forming (at mostlg x kr pair comparisons. According to our  cient condition to elect a good sample pair. For this reason,
experience, values & = 4 andkr = 200 produce very good e propose a new color metric derived from two previously
results. For these values, the actual number of performed pair 1,5 4e observationgi) Omer and WermanQwo4 showed
comparisons is 216.€, 16 + 200), while its net effect ap-  that small pixel neighborhoods tend to form locally linear
proximates a total of 3,200.¢, 16 x 200) comparisons.  ¢|ysters in color space. This is particularly true for small
Sections3.2.1and 3.2.2 present the details of the sample  \indows located over image edges; afij Mitsunagaet
gathering and sample refinement sub-steps. al. [MYT95] showed that if the foreground and background
. gradient normg|VF|| and||VB|| are relatively small com-
3.2.1. Sample Gathering pared to|| Va||, then the image gradie| is directly pro-

In this stage, each pixgl € Ty looks for possible foreground ~ Portional tovVa.

and background samples alokgline segments starting at Based on these observations, one concludes that in the un-
p (Figure2). These segments divide the plane of the image nown region of the trimap — whergVa|| is potentially
into kg disjoint sectors containing equal planar angles. The gy |arge — the locally-linear color variations observed by
slopg pf thg fII‘St.|Ine segn:[ent assouateqatrs defined by Omer and WermanQWo4 are primarily caused by varia-
an initial orientatiord € [0, 5] measured with respecttothe  ions ing. Thus, all colors from pixels in a small local win-
horizontal line. Such an angle takes a different value for each oy are situated approximately along the line in color space
pixelq € Tu in & 3x3 window (Figure2). The orientation of  gh50ned by the true foreground and background célansd

tg[e other segments is given by an angular increrfipgt= B. This means that a good sample pair should minimize the
&, - Starting fromp and following a particular line segment  ¢romatic distortion not only fop, but for all pixels in a
yields at most one background and at most one foreground small window aroundp. Thus, a good sample pair should

sample — the ones closer talong the segment. Thup, minimize the least squares residual defined bynesighbor-
must find its best pair among, at mdé,sample pairs. hood affinityterm:

We introduce a new objective function that combines pho- Np(fi,bj) = Mq(F',B!)? A3)
tometric, spatial, and probabilistic elements to select the best i q&0,

sample pair for a pixel from the initial set akg pairs. The . . . -
proposed approach is the first to comprehensively considerW.herer is the pixel neighborhood o, consisting of all

all these aspects. Thus, gtandbj be a pair of foreground pixels ina 3>_< 3 wmd_ow centered 3p, aquq 's the oper-
and background samples, whose colors ’rand Bj, re- ator defined in Equatiod, evaluated at pixe.

spectively. Next, we will derive an objective function (Equa- Image space statisticsin addition to color space informa-
tion 7) for identifying the best sample-pair for each pixel tion, image space statistics should play a key role in iden-
p € Tu. Before describing this function, its required build-  tifying good pair of samples. These image parameters were
ing blocks (ninimization of chromatic distortioandimage not considered in the sample selection procesS\«E(74,
space statistigswill be presented. where only color space metrics were used. We will now

(© 2010 The Author(s)
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use such information to estimate the probability of pigel
belonging to the foreground, which will be later used in
Equation6 to enforce a meaningful alpha value. Thus, let
Dp(s) = Dimage(S: p) = ||s— p|| be the image space distance
from a samplesto the current pixep. We define thenergy
Ep(s) to reach a foreground or background sampfeom
the current pixelp as the squared path integral @i along
the image space line segméntonnectingp ands:

Ep(s) — /L'\|v|~dr||2 = /ps V"(ﬁ)

The energyEp(s) is directly proportional to the projected
length of VI onto the normalized direction of integration
(s— p). Thus, if the linear path frons to p crosses image

regions wherg|V1|| is large €.g, at image edges), greater
energy will be required to reach

2

O

An estimate of the probability gb belonging to the fore-
ground, according to the energy(s), can be obtained as:
(1)

min (Ep(fi)) +min; (Ep(b;))
Thus, if the minimum energy required to reach a foreground
sample is much lower than the minimum energy required to

reach a background sampkfp will be close to one —e,
pixel p has a high probability of belonging to the foreground.

®)

Intuitively, we want the alpha valuip (computed frond;
andbj — Equation?2) to correlate with the probabilitPF,
of pixel p belonging to the foreground. Thus, a good sample
pair should also minimize the functidip:

Indeed, for a given pair of sampl¢s,bj), whenPF, = 0,
Ap(fi,bj) = &p. Thus, minimizingAp(fi,b;) also minimizes
the value ofdp. Likewise, whenPF, = 1, Ap(fi,bj)
(1—ap), so minimizingAp(fi,bj) maximizesdp. Finally,
if PFp = 0.5, Ap(fi,bj) = 0.5, and the value ofip has no
effect on the minimizationAp(fj, bj) will be used as one of
the terms in the final objective function (Equatidn

The Objective function: The resulting objective function
that combines photometric and spatial affinity, as well as
probabilistic information for selecting good pairs of back-
ground and foreground samples can be expressed as:

ap(fi,bj) = Np(fi, b)) ™ Ap(fi,bj)*Dp(fi)* Dp(bi)®. (7)

Here,Np(fi, bj) minimizes chromatic distortion in the>33
neighborhood aroung. Ap(fi,b;j) enforces that the com-
puted alpha matte values correlate with the probability of
pixel p belonging to the foregroundp(f;) andDp(b;j) en-
force the spatial affinity criterion: the background and fore-
ground samples should be as close as possitpeThe con-
stantseqy a ,py define the penalties for having a high value
in any of these metrics. In practice, we found that values of
en = 3,ea =2, e = 1 ande, = 4 tend to produce good re-

for all possible sample-pairs:
(fo,bp) = argmiry , gp(fi. bj). 8)

Let (F,BJ) be the corresponding colors of the best pair

(fp, Bpg for p, obtained in the gathering stage. We then com-
putec? ando? as:
2 1 2
0f = [N 2qeQ ||Cq_F3H2’ )
2 1
O = N Yaco [[Ca—BR

whereQ¢ andQy are 5<5 pixel neighborhoods centered at

fp andbp, respectively, and\ = 25. The values? andc?
measure the local color variations in the neighborhddgs
and Qp assuming small univariate Gaussian color distribu-
tions around, andbp. We will usea? anda? in the sample-
refinement step. Hence, the output of the sample gathering
stage is a tuple} = (F§, B}, 0%, of) for each pixelp € Tu.

3.2.2. Sample Refinement

For small values okg, the number of samples analyzed by
pixel p € Ty during the sample gathering stage is often not
enough to reliably estimate either an alpha value or the true
foreground and background colors. Thus, a more extensive
search is performed by sharing the best results obtained by
all pixels in a neighborhood arourgin Ty.

In the sample-refinement stage, each pigetompares
its own choice of best sample-pair with the choices of its
(at most)k- spatially closest pixelg| € Ty. Among those,
the three tuples with the lowest values M (Fy,BY) are
then averaged to create a new tuife= (F3, B3, 6%, 52)
for p. The purpose of this averaging is to reduce the occur-
rence of noise in the resulting alpha matte. This procedure
is supported by the observation that neighbor pixels tend
to have similar values of alpha, as well as background and
foreground colorsi(e., neighbor pixels tend to present high
affinity). Therefore, by averaging the best few values in a
given neighborhood, the occurrence of noise is reduced.

The output of the sample-refinement stage for ppxelTy
is another tuple}, = (Fp, Bp, ap, fp), where:

: g2 _ =
Fo_ { Cp if ||Cp—FJ||” < &% (10)
P Fg otherwise ’
. ~q112 ~
B — J G if ||Co—B||” <& (11)
P B3 otherwise ’
Cp—BY) - (F} —B!
alb — ( (Y P) ( p2 p)7 (12)
IF5 —Bb||
- { exp {—A Mp(F§,B}) } i Fé;éB:p 13
€ if Fp =Bp

Here, the superscriptrepresents quantities computed in the

sults. Thus, the best pair of foreground and background sam- sample-refinement stage. The intuition behind the computa-

ples (fp, bp) for pixel pis obtained by evaluatingp(fi, bj)

(© 2010 The Author(s)
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tion of FFE is that if the cololCp, of pixel pis sufficiently close
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to the average coId?S of the best three foreground sam-
ples computed during the gathering stage, ﬂﬁéﬂhould be
taken asCp, thus keeping the original color. The case for
B{) is similar. The alpha valu<-:(rp is computed as the rela-
tive length of the projection of vect¢Cp — BL) onto vector
(Fp — Bp), defined by the computed foreground and back-
ground colors. Thusfqrp represents the opacity pf Finally,

f{, expresses the confidencemin its candidate foreground
and background colorp and Bp. This confidence mea-

space should not be averaged. This is modeled by the Gaus-
sian function;(ii) Confidence values pixels with low con-
fidence in their foreground and background samples should
not propagate their uncertaintyii ) Difference in alpha val-
ues— by minimizing || VF|| and || VB|| where the estimated
||V is large, we make the fin&Fa =~ VI; Furthermore,
whenevelCq = By, ag = 0 regardless the value &f; con-
versely, wheneveEq = Fq, ag = 1 regardless the value B
(Equation12). Thus, we multiplyFy by ag in Equation14to

sure should decrease fast (but not too fast) as the foregrounddenote that the confidence of pixalin its foreground color

and background coloi§ andBj fail to properly model the
colorCp of p. According to our experience, a valuelof= 10
produces good results. AdditionallyG} is close to botrﬁ%J
andBY, thea value ofp cannot be accurately estimated and
the confidencd}, is set to a small value= 108,

For completeness, output tuples for pixels outside the un-
known region are also defined; thus, for pixels Ts, we
havet| = (Fy =Cy, B, =Cy, ay =1, fj = 1); and for pix-
elsv € Ty, we haver|, = (F; =Cy, B, =Cy, a{, =0, fy =1).

3.3. Local Smoothing

Although the sample-selection process takes into account
affinities among localized groups of pixels, this is not
enough to prevent discontinuities in the resulting matte.
Thus, an additional step is used to ensure the local smooth-
ness of the final alpha values, while maintaining its dis-
tinct features. This is achieved by computing, for each pixel
p € Tu, a weighted average of the tuprd,sof the closestn
neighbors ofp in image space (we use a valuernf= 100).
Such neighbors can come from eitf¥gr T, or Ty. Let Wp

be such a neighborhood for pixel The weights are defined

in such way that details in the matte are preserved.

The final foreground and background colorsFp andBp of
p are computed as:

P G (Dimagd P.9)) g if p:q7
WC , r Fr

F = quwp[ (p.0) agq q]7 w
Yaew, {Wc(p, a aa}

5 _ JI ppaa-cpe]

Sacw, [We(p.q) (1-af)]

whereG is a normalized Gaussian function with variance
0% = m/91t pixels. The setVp of the closesin pixels to p
approximates an image space circle with area 2. The
farthest pixels in¥p have a distance af to p and should
have weights close to zero in the Gaussiae,(r = 30).
Thus,m= 1?2 = m(30)?, which solves ta? = m/9m.

The weightWe(p, g) blends the foreground (background)
colors of pixelsp andg taking into account(i) Spatial affin-
ity — the colors of two pixels that are far apart in image

Fq is directly proportional taxg. Similarly, we multiply By
by (1—ag) in Equation15to denote that the confidence of
pixel q in its background coIoBa is inversely proportional
to ag.

We can now compute the confidendg of pixel p in
its final foreground and background coldfg and Bp. To
do so, we first define in Equatiati7 the mean foreground-
background distance g (in color space) for the neighbor-
hoodWp. This mean is weighted byg(q) (Equation16)
which is directly proportional to the confidenctés of g and
is maximized for values adg = 0.5 — where the confidence
of gin bothFy andBy is potentially maximal — while being
zero foragq = {0,1}. Deg will be used next to compute the
final confidencefp.

Weg(0) (16)

fqog (1-0ag).
qu% [\M:B(q) Hqu - BEH]
> qew, Wes(0) .

Dra(¥p) (17

The final confidence fp of pixel p in its final foreground
and background color§p and Bp is modeled by Equa-
tion 18. Here, the first term expresses the ratio of the distance
||Fp — Bpl| to the mean foreground-background distance in
the neighborhoo®;, (clamped to the range [0,1]). This ra-
tio tries to detect pixels whose final foreground and back-
ground colors deviate from those in the neighborh&gd

The second term is analogous to Equati@rA = 10).

- [Fp —Bp||
fp=min (1, m) exp{ — A Mp(Fp, Bp)}. (18)
Having Fp, Bp and fp, we can now compute the final al-
pha valuenp of pixel p. In order to do so, we first define the
low frequency alphan('p (Equation20) as the weighted av-
erage of alpha values in the neighborhdBgl The weights
W (p,q) are proportional to the confidencfé of g and in-
versely proportional to the image space distancp ahdq.
Additionally, greater weights are given for pixels lyingTin
or Ty (i.e., known pixels).

Wa(p,0) = fq G (DimageP,0)) +3(a ¢ Tu), (19)

L Zaew [Wa (. o]
P Y qew, Wa (p,0)
whered is a boolean function returning 1 wher¢ Ty; or O

(20)
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otherwise. G is the Gaussian function frovh (Equationsl4 Image  #of pixels % Unknown Time (sec)
and15). elephant 536,800 16% 0.029
The final alpha valueap for pis given by Equatior21. This (_jonkeyl i58512€3%% 12200//0 %%?382
equation blends the alpha value computed usingndBp pineappie ' 0 :
with the low frequency alphal,, using as blending factor the doll 451,200 25% 0.034
\ wirequency aiphap, Using nding fac plastichag 529,600 28% 0.040
final confidencefp. Thus, pixels with a low final confidence

h . ] . plant 425,600 35% 0.038
will accept alpha values from higher-confidence neighbors
(modeled byak) to preserve local smoothness trol 512,000 40% 0.045

Wp) 1o P ' net 496,000 51% 0.056

ap = fp =B FoBo) (g al 1)

5 Table 1: Time to generate alpha mattes with our technique
[[Fp—Bpll for the images in the benchmark (Figu2g using the most

) ) conservative trimaps.€., large).
Finally, the output of the proposed algorithm for the

matting parameters of pixgh € Ty is given by the tuple
(Fp, Bp, ap) with an associated confidence valuefgf For ) ) ) )
completeness, the matting parameters for pixels outside the (MSE) metrics, when compared to previous techniques. Itis,

unknown region are also defined. Thus, for pixgls Tt however, up to 100 times faster, allowing, for the first time,
we have the tuplegFq = Cq,Bq = Cq,aq = 1) with con- alpha matting in real-time applications. Such results indicate
fidence fq = 1, and for pixelsw € T, we have the tuple that our technique produce high-quality alpha mattes even
(Fw = Cw, Bw = Cw, aw = 0) with confidencefy = 1. for challenging images.

Since previous technique are not suitable for real-time ap-
plications, performance comparisons considering the time
required to compute the alpha matte have been overlook
We have implemented the technique described in the paperin many previous publications. Our technique, on the other
using C++ and GLSL and used it to process a large num- hand, can compute alpha mattes for typical images in real-
ber of images, and videos. Given that the search space as-time. Tablel summarizes the times required to extract the
sociated with Equatiofd is both small and discrete, its min-  alpha mattes for the test dataset available from Rhemann
ima is computed by evaluating this equation for its entire et al’s benchmark RRW*09] using the most conservative
search space and by selecting the sample-pair with the small-trimaps (.e., large). For each image, we provide its dimen-
est value. Since these operations can be performed indepen-sijons, the number of pixels in the unknown region of the
dently for each pixep € Tu, we exploit the inherent paral-  trimap, and the time required to compute the matte.
lelism of current GPUs to efficiently perform these searches
in parallel. All the results reported in this paper were ob-
tained on a 2.8 GHz Quad Core PC with 8 GB of memory
and a GeForce GTX 280 with 1 GB of memory.

4. Results

Figure 3 shows the alpha mattes generated by our tech-
nique for some images from the training dataset provided
by [RRW*09] (using the small trimaps). For such dataset,
the ground-truth mattes are available and are shown next

In order to assess the quality of our results, we used the to our results for comparison. Versions of these images in
benchmark provided by Rhemaenal. [RRW*09]. It eval- their original resolutions are provided for closer inspections
uates and compares the accuracy of an image-matting tech-as supplementary material. For this dataset (average image
nique against the results produced by the state-of-the-art. size of 0.5Mpix, with 16% unknown pixels), our technique
Such a benchmark is composed of eight test images publicly takes on average 0.024 seconds for the matte computation.
available atvwwal phamattingcom each accompanied by  The expansion-of-known-regions step (Sectol) reduced
three trimapsgmall large andusel). These images are de-  the number of pixels iffy by 38% on average, but 4% of the
signed to be challenging representations of natural scenes,pixels were erroneously considered to b&jror Ty,
containing examples of highly textured backgrounds, as well
as images where background and foreground colors Cannmbackground samples are found using a linear search (Fig-

be easily differentiated. The ground-truth alpha mattes for . . . .

. . ure 2) with a step size of 6 pixels and a maximum of 300
each of the test images are used to assess the quality of theste < Fine details in the triman miaht be “iumped over” b
results, but are not disclosed to the public. As such, Rhe- pS. p mig jump Y

mannet al’s benchmark provides an independent and reli- some unknown pixels; however, this is not a problem due to

able mechanism for evaluating the quality of digital image- the sample-pair sharing in the sample-refinement stage.
matting algorithms. Table2 (a) and (b) show results from  Cost of the Algorithm: Let z be the number of pixels in
Rhemannet al's benchmark and summarize the accuracy Ty. Per pixel computation can be defined as follogisthe

of our technique $hared Matting - Real-Timen compari- “expansion of known regions” step runs in constant time
son to others. Our approach ranks second according to theO(nk,-z); (i) The “sample gathering” step has a worst cost
sum of absolute differences (SAD) and mean squared error of O(z+ ké), and average cost of @ kﬁ), wherew is the

In the gathering stage (Sectidh2.1), foreground and
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Sum of Absolute Troll Doll Donke; Elephant Plant Pineapple Plastic bag Net
et avg. | avg. |avg. | (Strongly Transparent) | (Strongly Transparent) | (Medium Transparent) | (Medium Transparent) | (Little Transparent) | {Little Transparent) | (Highly Transparent} (Highly Transparent)
- overall usel Input Input Input Input Input Input
rank |rank | rank |rank| small large user | small large user | small large user | small large user | small large user | small large user | small large user | small large user
shared Matting 1.8 |19 23 (14 (1081 2052 151 | 7.83 1163 811 | 421 531 421 | 211 583 291 | 591 9.21 1L41| 51 B8.81 6.81 3495 34.94 3434| 23.92 2843 25.71
improved color matting | 2.7 | 2.9 | 2.6 | 2.6 |14.94 2455 205 | 6.72 9.52 852 | 463 614 4.32 | 264 542 3.44 | 7.54 992 12.52| 63 1013 B.43 [26.12 26.72 23.61| 23.81 25.61 26.72
5"(‘“?.‘”_"‘:::')"9 3.3 |34 |35 (3.0(1242 2163 1632 955 13.54 9.94 | 442 562 443|253 685 322 | 7.12 10.83 12.63| 542 972 7.42 (3557 3585 35.55| 27.64 33.44 2983
Closed-Form Matting | 3.6 | 3.6 2194 1723 591 B.51 863 | 474 63 4.61 3.33 | 93¢ 12.14 1936 836 1496 134 2653 2572 4838
Robust Matting 45 |43 2847 21.15|10.16 16.98 1146| 485 656 735 445|733 145 18.15| 6.84 1465 10.65 3445 375 385
Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net
Mean Squared Error avg. | avg. | avg. | (Strongly Transparent) | (Strongly Transparent) | (Medium Transparent) | (Medium Transparent) | (Little Transparent) | (Little Transparent) | (Highly Transparent) (Highly Transparent)
overall | small | large | user Input Input Input Input Input Input Input
rank | rank | rank |rank| small large user | small large user | small large user |small large user |small large user |small large user |small large user | small large user
shared Matting 16 |15 |20 |14[051 162 031 05: 093 051|03L 041 031|011 042 0.21 041 0.61 091 041 0.61 051|294 2.84 2.74| 11 13z 11
Improved color matting | 2.0 | 1.9 [ 24 [ 18 | 083 245 155 | 031 05: 051|031 041 031|011 031 021|074 072 051 [04: 072 072 22 192 L41| 132 155 152
hinrusl Mistting 26 |23 |35 |21|062 173 12 |073 125 083|031 041 031022 064 021|052 083 1l2 [041 083 061| 35 35 35 [ 132 194 152
(Real Time)
Closed-Form Matting | 2.9 835|051 184 113|031 041 062 |03: 041 031|011 031 021126 145 235|083 166 16s| 35 275 192 132 L2156
Robust Matting 33 41 34| 115 288 176|073 156 094|031 041 031|011 053 032|052 124 193 |052 155 124|151 181 2.63| 243 235 294

Table 2: Results of Rhemann et als benchmark. Our technique, Shared MéReaj-Time), ranks second when compared
against previous techniques. However, it is up to 100 times faster. Prearsour technique extended with an optimization step
(Shared Matting) ranks first when compared against the same sethofitgies. The overal rankings were computed from the
SAD and MSE error values supplied by Rhemann et al's benchmalktia top five techniques are shown.

Figure 3: Left: Images from the training dataset provided
by [RRWO09]. Center: Alpha mattes extracted with our
technique using the trimaps supplied in the dataset. Right:
Ground truth alpha mattes provided for comparison.

average number of pixels inspected before finding candidate
samplesyiii ) the “sample refinement” step runs in constant
time O(); and(iv) the “local smoothing” step runs in con-
stant time O(4n). All this computation can be done inde-
pendently for each pixgd € Ty. Thus, let be the number of
pixels which are processed in parallel on a GPU. The aver-
age cost is Qz/t). Worst cost is Q7 /t).

4.1. Applications

Video Matting Our method enables the use of alpha mat-

ting in real-time applications for the first time. One possi-
ble such application is real-time matte generation for videos.
Since our approach uses a trimap as input, it needs to rely
on other techniques for providing trimaps for each frame of
the video in real-time. The supplementary video illustrates
such an application for two video sequences. In these ex-
amples, the trimaps were created by dilating the boundaries
of the binary segmented video frames. Such segmentation
was obtained using a real-time foreground-background bi-
nary segmentation technique which models the background
color distribution from color priors using thkernel den-

sity estimatiomrmethod (as such, this technique is limited to
videos where the foreground and background color distribu-
tions do not overlap). Thus, given an input video sequence,
the results shown in the supplementary video were entirely
computed in real-time. This means that the whole sequence
of operations comprising binary segmentation, boundary di-
lation, and matte extraction was performed in real time. Fig-
ure4 shows some frames from two of these video sequences
with their corresponding extracted mattes.

Interactive Alpha Matting  Another benefit of the im-
proved performance of our technique is its ability to provide
real-time feedback to users during interactive alpha-matting
sessions. We demonstrate this feature using a simple trimap
creation interface. Initially, all pixels in the image are labeled
as belonging to the unknown regidp. As one uses small
scribbles over the image, a trimap is automatically computed
and refined, also providing instant feedback on the resulting
matte extraction. The scribbles are propagated using an iter-
ative flood-filling procedure, limited by a simple edge detec-
tor. Figure5 illustrates the concept using one of the images
of the training dataset. On the left, one sees the scribbles su-
perimposed onto the original image. The blue color is a label
for foreground pixels, while red and yellow represent back-
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Figure 4: Some frames extracted from video sequences pro-
cessed by our technique for real-time matte extraction. The
images on top show the original frames, while the extracted
mattes are shown at the bottom.

Figure 5: Use of our technique to interactively segment im-

ages by alpha matting. As the user scribbles over the im-
age (left), a trimap is automatically updated. The resulting

trimap and alpha matte computed from the set of scribbles
on the left are shown on the center and right images.

ground and unknown pixels, respectively. The image on the
center shows the computed trimap, for which a gray shade
indicates uncertainty about whether a pixel belongs to the
background (shown in black) or to the foreground (shown in

white). The extracted alpha matte is shown on the right.

The speed of our method makes the matte creation process,
easier for the user, as there is no delay between input and
matte refinement. This considerably reduces the time taken

to interactively segment images by alpha matting. The sup-
plementary video shows such an application in action. The

4.2. Matte Optimization

Some users might want to obtain a matte with the best pos-
sible quality, even at the expense of extra computation time.
This can be achieved by refining the matte obtained in Sec-
tion 3 using an additional optimization step. This step is
analogous to the one iIrRRGO0§, where the final matte

is obtained by minimizing a quadratic cost functionadn
This cost function is comprised ofsamoothness terand a
data term Here, we use theatting Laplaciarnof [LLWO08]

as smoothness term, but for the data term we use the mat-
ting parametergap, fp) obtained in Sectior8. Thus, let

a" = [ay, ... ap, ... an] be a vector with the alpha val-
ues, obtained in Secti@) for all n pixels in the input image.
Let be a diagonal matrix where each diagonal elenygnt

is defined agp = fpif pe Tuoryp=0if pe T UTp. The

final alpha matte is obtained by solving for:

a=argmin a'La + A(a—&) D(a—a)

+oy—6)Fa—a @

where A is some relatively large number when compared
to to the values irfi and (™. y = 1071 is a constant which
defines the relative importance of the data and smoothness
terms,L is the matting Laplacian arid is a diagonal matrix
whose diagonal elements are one for pixel§in T, and
zero for all other pixels. Equatio?2 yields a sparse linear
system which we solve using the conjugate gradient method
implemented on the GPU. For an image with 512,000 pixels
and 25% unknown pixels, solving fortakes approximately
100ms. Thus, the system is no longer real-time but still inter-
active. For videos, the matting Laplaciarmust be recom-
puted for every frame. However, such computation for frame
k can be offloaded to the CPU and performed in parallel with
the GPU optimization of framg— 1).

This optimization step induces am-propagation from
high confidence to low confidence pixels. Thus, while pixels
with a high final confidence try to adhere to the alpha values
computed in Sectior3, pixels with a low final confidence
will rely more on propagation for their final alpha values.

resulting mattes are generated considerably faster forimages Tables2 (a) and (b) show Rhemaret al's benchmark

with complex edges and topologies. Only in the worst case
one needs to completely trace the border of the foreground
object, which is always needed in the technique described
in [WACO07].

High-resolution Matting Due to its improved speed, our

results for the version of our technique containing the ad-
ditional optimization step§hared Mattin This extended
version ranks first both in the sum of absolute differences
and mean squared error metrics.

5. Limitations

method can generate alpha mattes for high-resolution images
much faster than existing techniques. We ran our algorithm The proposed technique makes the assumption that the true
on the high-resolution training dataset frorRRW*09], foreground and background colors of unknown pixels can
where images are, on average, 6.7 Mpix with 16% unknown be explicitly estimated by analyzing nearby known pixels.
pixels. For these images, matte computation takes a meanFor images where this assumption does not hold, computed
time of 0.3 seconds, with a longest time of 1.1s and short- alpha values will not be accurate (this will be apparent in
est time of 0.17s. We also tested our method on extremely the final, low, confidence values). Examples of such prob-
high resolution images. For a 37 Mpix image, for which a lematic images are those containing completely transparent
trimap was created manually containing 11% unknown pix- foreground objects or those where the foreground and back-
els, matte computation took 3.65 seconds (Wijth 30). ground color distributions strongly overlap.

(© 2010 The Author(s)
Journal compilatiori© 2010 The Eurographics Association and Blackwell Publishitg



E. S. L. Gastal & M. M. Oliveira / Shared Sampling for Real-&ifpha Matting

For videos with highly textured backgrounds or greatly edges the following CNPg-Brazil fellowships and grant:
transparent foreground pixels, the produced matte might suf- 200284/2009-6, 305613/2007-3, and 476954/2008-8. Ed-
fer from temporal noisei.e. flickering. One can consider  uardo S. L. Gastal acknowledges his PIBIC/CNPg/UFRGS
many ways for improving the temporal coherence of the fellowship.
matte, such as temporal blending of alpha values based on

confidence estimates, or even selecting candidate SamplesReferences

along the time axis, in addition to the image space.
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We have presented the first real-time matting technique for

natural images and videos. Our technique is based on the ob-
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Such a function takes into account spatial and photomet-
ric, as well as some probabilistic information extracted from
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Rhemanret al. [RRW*09]. In such a benchmark, our real-
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absolute differences and to the mean squared error metrics.
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tion step to improve the matte quality ranked first according
to both metrics, while still performing at interactive rates.

We have demonstrated that our technique can provide

instant feedback to support interactive extraction of high-
quality alpha mattes. It is also fast enough to, for the first
time, support alpha-matte computation for natural videos
in real-time, given that the corresponding trimaps are pro-
vided. This opens up exciting opportunities for new real-
time applications and for improved real-time trimap gener-
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