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Abstract. Alzheimer’s disease (AD) is a fatal neurodegenerative disorder which imposes a
growing burden on society and health systems worldwide. Besides the existence of few compu-
tational models for AD in comparison to other neuropathologies, neural morphologic variability
and its dendritic tree complexity are usually disregarded. The hippocampus is one of the first
regions to present signals of atrophy and neuronal loss and it acts as structural predictor of AD
progression. Here it is simulated how the morphologically realistic models from CA1 and CA3
hippocampal neurons decreases the firing probability given an implementation of AD’s Amy -
loid-B (AP) interaction. Focusing on the synaptic integration by the morphologic features, here
the same stimulation protocol is used to evaluate single spike behavior. The experiment shows
that under same spiking conditions the probability of CA1 to fire is, in average, lower than CA3
when the parameter of A in the total neuron membrane is variated. The observation suggests
that there is a morphological firing facilitation for CA3 neurons, thus dendritic computation de-
tails should be considered for futures AD models due to its importance for synaptic summation.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory
impairment affecting mainly elderly people. It is currently irreversible [1]. The under-
standing of underlying mechanisms through computational modeling is an important
ally to drug-targeting. There is a broad range of therapeutics strategies, from cognitive
enhancement training [14] to the cholinergic system modulation [7], however, acting
as palliative care for mild and advanced late onset AD [1]. For this reason, early-stage
identification and computational modeling of AD is useful for disease-altering re-
search [8]. A key region for understanding AD progression is the hippocampus which
its shrinking leads to memory and spatial coordination loss [8]. Computational models
for AD objectively measuring hippocampal alterations focuses mainly on the synaptic
dysfunction [4] and proteins aggregation dynamics [5], over such partial AD neu-
ropathology drug targets has been proposed. From this point of view, it is invaluable
to observe how morphological variability between hippocampal regions reacts to AD.
Here, it is showed in silico how realistic reconstruction of CA1 and CA3 neurons
have its spiking probability modified as a result of the AD effects mediated by Amy-
loid-B (Ap) protein.



Computational neuroscience allows simulating brain dynamic components in sev-
eral scales opening a whole new branch of experiments. There are multiple directions
in which computational models would propose a way to change the AD disease status
at least in cellular and molecular level. The number of assumptions [5] required to
cover AD experimental findings [6] are a limitation for simulation neuroscience since
there is no consensus among community regarding the cause that triggers AD [3].
This scenario is worsened by the lack of connections between methodological ap-
proaches which have its own temporal and spatial resolution to observe neuropatholo-
gies [9]. A neuro-centric strategy is to adjust the firing properties of AD-affected neu-
rons to behave as healthy ones. A promising research is presented by H. F. Iaccarino
[12] where they show that modulating AD neuronal oscillations with optogenetics en-
ables one to replicate healthy spiking patterns, resulting in an increase of A endocy-
tosis by microglia recruiting. Another work, focusing on the single neuron scale in sil-
ico was conducted by V. Culmotni et al. [4]. They are able to show how ion channel
conductances changes in a morphologically realistic CA1’s pyramidal cell would mit-
igate simulated A3 deposition effects in the spiking probability. However, there are no
considerations regarding how morphological variations from other hippocampus re-
gions would affect the spike probability influences. Here let’s observe the role of mor-
phologic strains of CA1 and CA3 neurons when the Af is included through conduc-
tance reduction in the synaptic transmission in a compartment based model.

2 Data and Methods

The simulations were carried out in Python (v 2.7) and NEURON (v 7.2) [11], mor-
phologic realistic reconstruction obtained in Neuromorpho.org from rat’s hippocam-
pus CA1l (n=41) and CA3 (n=43) were filtered using metadata with complete basal
and apical dendritic tree, incomplete axon and soma. In order to evaluate the spike
probability, which is defined as the chance of a given synaptic input to provoke a
spike, we adapt the stimulation protocol [4]. Here, let’s use two sets of 25 AMPA-in-
duced synapses distributed between the proximal and distal regions in apical den-
drites, in which apical receives synapses with 10 ms of time decay whereas proximal
receives 5ms. Synaptic distribution rule depends on the neuron size, here is consid-
ered proximal-apical region until 3/4 of distance from soma to the distant apical seg-
ment, whereas distal region is set after 3/4 [15]. Peak synaptic conductances are set to
0.87 nS to the proximal and distal synapses are three times weaker. AD effects in neu-
rons are stimulated through membrane conductances reductions randomly imputed for
a given percentage of neuron surface area [4]. When a synapse is set in a segment af-
fected by AD it reduces the peak synaptic conductance in 50% [20]. The start time ac-
tivation for synaptic stimulation is given by a Gaussian distribution (=50 ms, 02=5
ms) to account for y-cycle positive sweep[4]. Moreover, distal synapses are activated
with a delay of 5ms to simulate synaptic arriving delay between Perforant Path and



Schaeffer Collaterals [16]. Despite this delay being biologically plausible for CA1
which anatomically receives inputs from CA3, we keep the same stimulation protocol
in order to compare synaptic summation among these hippocampal different neuron
morphologies. Using L-measures software [22] is possible to evaluate topological
and compartment level measures for CA1 and CA3 morphologies as depicted in the
Figures 1 and 2. The complete dataset of neuron reconstructions and its morphomet-
rics extracted features are available at GitHub repository for pattern recognition fur-
ther studies.
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Fig. 1. From left to right boxplots, respectively, the neuron surface area, the number of dendrite
bifurcations, and the average reconstruction compartmental length.
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Fig. 2. From left to right boxplots, respectively, the terminal degree average, the bifurcation an-
gle averages, and the parent-daughter ratio average.

Membrane resistance properties for batch simulation were fixed differently for
CA1 and CA3 based on the description given [17] and [10], respectively. Each per-
centage of affected membrane is repeated 10 times and averaged. Classes of ion chan-
nels densities varying linearly with the distance from the soma as described in [17] for
CA1 were implemented equivalently for CA1 and CA3. The ion-channels used are Th,
Ka, Kpr and Na, the conductances reductions to resemble AD are respectively, Ka (-
60%), Kpr (-40%) and Na (-50%) as done in [4].


https://github.com/yurier/CA1_CA3_morpho

3 Results

Computational neuroscience applied to neuropathologies provides drug targets to be
tested in order to simulate healthy neuron behavior [5]. The fine-tuning for drugs ob-
tained in silico environment should account for as much variability as possible in or-
der to avoid non-desired interactions. Particularly in AD, a model previously proposed
[4] suggest a drug target observing a single pyramidal CA1 neuron morphology disre-
garding between-region variability. Here, the effect of Ap in a computational model of
AD is studied using various single cells morphologies from hippocampus CA1 and
CA3 due to this region being a predictor of AD progression [20]. Other approaches to
AD by means of computational modeling explores different levels than single cells
(network and molecular) looking forward to possible interventions able to reduce AD
effects. It is noticeable that modeling AD tentatives have been quite a few compared
to other neuropathologies [5]. Here is shown how realistic morphologies are impaired
differently through ion channels and synaptic transmission modifications.

Consider CA’s neurons as isolated units is useful to understand its computational
roles, for example, how different morphologies benefits firing probability [18]. Other
elements, such as plasticity and wiring connectivity patterns may give rise to firing
differences between hippocampal regions studied. That is, morphology is one of the
many determinants of spiking behavior. An example of that is given by Mizuseki et al
[18] which show that dominance of spike probability between CA1 and CA3 depends
on the brain state activity (e.g. theta oscillations periods and rapid eyes movement)
and the firing pattern (e.g. burst firing and single spike) which is defined by the inter-
spike interval statistics. They show that CA3 pyramidal cells had a higher probability
of long bursts, conversely, the brain states studied by Mizuseki et al. the CA1 presents
an overall higher firing rate. Here, under a synaptic stimulation protocol, the morphol-
ogy-based comparison suggests that CA3 neurons have a higher average probability
in single spike firing in comparison to CA1l. The same dominance is found given
when using the implementation of membrane proportion affected by the Af [4].
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Fig. 3. Firing probability average for CA1 and CA3 regions given the Af} in the membrane.



It is noticeable by the figure 3, despite CA1 has a basal firing probability lower
than CA3 under same input, the CA3 has faster decreasing when A3 membrane af-
fected increases. Currently, there are no studies defining the minimum firing activity
in terms of population spike probability to sustain an expected behavior for a given
task in CA1 and CA3. That is, which is the maximum damage a region can tolerate
prior to its multiple related functions became impaired and how to measure this dam-
age? Supporting evidence suggest that CA1 has greater loss of neuronal density in
comparison to CA3 than any other hippocampal area in humans [19]. Research is re-
quired in order to define the weakest feature and its rate of impairment in a scale that
allows the computational modeling, e.g. morphologic features, wiring connectivity
patterns, neural density, glial interactions, excitatory-inhibitory imbalance.

Here, besides simple neuron model represents fairly well the neuronal behavior the
realistic morphology is used since they are crucial to incorporate dendritic computa-
tion characteristics inheriting neurons synaptic summation profile. Also, this choice is
due to the further plans to implement age-related dendritic defects which would play
an important role in AD pathology. Alternatively, ball-and-stick neurons would have
an increased performance gain in network simulation, however, to model the same
AD analogy presented here for networks, membrane modifications in area dependent
mechanisms should be parametrized. There are efforts in computationally model a
range of AD features networks. For instance, Rotgerink [21] implements a network
model of synaptic loss focusing in mapping AD synaptic parameters using data ob-
tained from microelectrode arrays (MEA) under injected Af3. Another example of AD
model in the network is given by Sergio et al. [23] in which is observed retrieval
properties (memory analogy paradigm) in a Venn’s network by means of simulated
synaptic loss in a conceptual model of AD. Despite computational neuroscience ad-
vances being increasingly scaling-up models based on neuronal measures there is yet
a significant lack of information to link it with AD staging. This is due to the fact the
most of the modeling parameters are obtained from rat models which are induced to
produce Af differing from humans AD sporadic form.

4 Conclusion

Here, one of the main hypothesis of AD, the A protein accumulation, is simulated in
order to show the role of morphologic features in synaptic integration. There are dif-
ferences in the way in which different cellular types responds to Amyloid-f3 (Ap) sug-
gesting, through this computational study, that the morphologic variability must be
taken into account in drug targeting discovery. Yet, there are much more to cover to
reach biological plausibility. For instance, there is a substantial loss of dendritic tree
complexity in normal aging and such dynamic mechanisms of branching should be
analyzed in the computational context to evaluate synaptic integration. However, this



is constrained by data resources which more difficult to sample than neuron morphol -
ogy reconstructions. Differently, new resources are available such as electrophysio-
logical measures from other AD hallmarks. For instance, the tau protein which has
been demonstrated to reduce synapses transmission by preventing healthy vesicle re-
lease. AD and computation neuroscience would benefit how neurological disorders
are modeled in order to understand the disease or even to find a way to give AD pa-
tients a way to live better. Maybe a future in which we cure AD is bounded to the way
in which data is produced and shared.
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