Combining Load Balancing and DVFS to Save Energy
on Imbalanced Applications *

Edson L. Padoin'?, Laércio L. Pilla'®, Mércio Castro', Philippe O. A. Navaux', Jean-Francois Mehaut*
{elpadoin,navaux } @inf.ufrgs.br, {laercio.pilla,mbcastro } @ufsc.br, jean-francois.mehaut @imag.fr

Institute of Informatics
Federal University of Rio Grande do Sul (UFRGS) — Porto Alegre, RS — Brazil
*Department of Exact Sciences and Engineering
Regional University of Northwest of Rio Grande do Sul (UNIJUI) — [jui, RS — Brazil
3Department of Informatics and Statistics
Federal University of Santa Catarina (UFSC) — Florianépolis, SC — Brazil
*Grenoble Informatics Laboratory (LIG)
University of Grenoble — Grenoble — France

1. Introduction and Motivation

Parallel scientific applications allow addressing grand
challenges in science. Scientific applications that represent
natural phenomena, such as molecular dynamics simula-
tions, or forecast natural phenomena, such as the propaga-
tion of seismic waves and the weather, are run in High Per-
formance Computing (HPC) platforms aiming at more ac-
curate results and smaller execution times.

However, these applications have increasing amounts of
data to be processed, demanding a larger number of process-
ing cores, and spend enormous amounts of energy to run. To
attend to this demand, supercomputers are scaling their per-
formance exponentially over the years leading to an expo-
nential growth in power consumption [1].

Whereas some scientific applications have a load that is
balanced, others are considered irregular applications due
to the fact that they have tasks with different processing de-
mands, which makes it difficult to use all available resources
at the hardware level efficiently.

In this work we focus on an energy-aware approach to
save energy when running these irregular applications. We
propose a new load balancing (LB) strategy named ENER-
GYLB to save energy by reducing the average power de-
mand of cores.

+ This work was partially supported by CNPq, FAPERGS, FINEP,
CAPES (under grants 3471-13-6, 5854-11-3, and 5847-11-7) and
by the HPC-GA research project, which has received funding from
the European Community’s Seventh Framework Programme (FP7-
PEOPLE) under grant agreement number 295217. This work was de-
veloped in the context of LICIA, an associated international labora-
tory between UFRGS and University of Grenoble.

2. Energy-saving approach

When a system runs load imbalanced applications, cores
with shorter tasks finish first and remain spending energy
without doing any actual work for the application, i.e., idle
cores are wasting energy. These cores could perform their
tasks slower and end at the same time as the other cores.
Thus, one possible approach to save energy without incur-
ring on a large growth of the execution time relies on the
use of Dynamic Voltage and Frequency Scaling (DVES).

From this premise, to save energy without losing perfor-
mance we designed a new load balancing algorithm named
ENERGYLB to be used with load imbalanced applications.
ENERGYLB is a periodic load balancer that uses DVFS to
change cores’ frequency during the application execution
and not when execution ends like some mechanisms.

First, ENERGYLB gets information from all cores used
by the application. It then weights the core loads according
to their current clock frequencies as show in Equation 1.

Wload; = current_load;/current_freg; €))

Once the weights of all cores are computed, the load im-
balance is computed as show in Equation 2.

li = Wloadaz /Wloadmin 2)

where Wload,,,., is the load of the most overloaded
core, and Wload,,;, is the load of the least loaded core.

When load imbalance is detected, the difference between
the most and least loaded cores is compared to the available
clock frequency limits. If load imbalance is greater than the

70 T T T T

60

50 .

40 | y

30 =

20 | .

Energy Consumption in Kilojoule

0 5 10 15 20 25
Socket number

(a) noLB

Energy Consumption in Kilojoule

70 T T T T

60

50 .

40 F y

30 =

20 | .

0 5 10 15 20 25
Socket number

(b) with ENERGYLB

Figure 1. Energy Consumption (in Kjoule)

ratio between the highest and lowest frequency, then ENER-
GYLB benefits from the execution time-focused load bal-
ancers available with CHARM++ [5]. In this case, reduc-
ing only the frequency would not be enough to balance the
load, so calling other load balancing strategies helps by mi-
grating tasks.

Otherwise, ENERGYLB maintains the frequency of the
cores with higher load and decreases the frequency of the
other cores according to their relative loads through DVFS.

By updating the frequency of the cores according to their
relative loads, ENERGYLB reduces the average power de-
mand of the system and, consequently, saves energy.

3. Energy Monitoring Tool

Current platforms have different interfaces to collect
power and energy data from different equipment. In some
tools, the collected data can be analyzed only after the ex-
ecution of tests making it difficult to correlate performance
with power and energy consumption. In order to provide a
single solution to measure instantaneous power and energy
consumption during the execution of applications on homo-
geneous and heterogeneous systems, we developed a new
tool named Energy Daemon Tool. It works in two consec-
utive phases when executed along with applications, as de-
scribed below.

* Discovery phase: at the very beginning, the tool ob-
tains mostly static information from the platform, such
as processor manufacturer, processor model, available
clock frequencies and current clock frequency. This in-
formation will guide the decisions on how power and
energy data will be collected from the underlying plat-
form.

* Monitoring phase: during the execution of the appli-
cation, Energy Daemon Tool monitors the system to
collect power or energy information with a periodicity
defined by the user. It maintains some statistical data
such as the minimum, maximum and average power,
and the energy consumption. In addition to that, the
tool can also trace instantaneous power and clock fre-
quency of the processors during execution. In this case,
data is stored in output files that can be visualized with
standard graphing utilities such as Gnuplot.

In this paper, the MSR registers available on Intel Sandy
Bridge processors were used to measure energy consump-
tion.

4. ENERGYLB Evaluation

We conducted our experimental evaluation on an SGI Al-
tix UV 2000 system composed of 24 Intel Xeon ES5-4640
Sandy Bridge-EP processors with 8 physical cores. In these
processors, there are 14 clock frequency levels available,
varying from 1.2 GHz to 2.4 GHz. However, current pro-
cessors do not allow DVFS on each core individually. So,
in this work, tests were performed using 24 cores only (one
on each socket). This approach was used because in Intel
processors, although it is possible to set the frequency of
each core individually, no power gains are achieved due to
a shared voltage rail and clock source.

For the evaluation of ENERGYLB, the CHARM++ pro-
gramming model was used. CHARM++ is a parallel pro-
gramming system that provides a set of information about
tasks and the application [5], benchmarks and load bal-
ancers to migrate objects between processors [2, 3]. We
selected a benchmark named ComprehensiveBench devel-
oped to Charm++. To perform the tests, the load balancers

__ 2500
)
qg’ 2000
[
5 1500
5
g 1000
x
L
= 500
o
- 0
% © © © © ©
e@» M «\«\\, \e» ((\«\»
?/(\ 6‘\00 Q\G Co
o“"e o
LB mmmsm | B + EnergyLB mmmmm

(a) Execution Time

Total Energy Consumption (kJ)

1600
1400 r
1200 | 1
1000 | 1
800 | 1
600 | 1
400 | 1
200 r 1
0
o @‘& &‘(\ \© i e& «\&
(,/ \‘00 Q\e
6‘2’6 g\e
LB mmsm | B + EnergyLB

(b) Energy Consumption

Figure 2. Execution Time and Energy Consumption to different load balancers

GreedyLB, GreedyCommLB, RefineLB and RefineCommlLB
were selected.

The operating system used in the machine is a UV2000
GNU/Linux distribution with kernel version 3.0.74. The ap-
plication benchmark was compiled using gcc version 4.3
and the version 6.5.1 of the platform Charm++. Results
show the average of a minimum of 10 runs. The relative er-
ror is less than 5% using a 95% statistical confidence with
Students t-distribution.

Figure 1 illustrates the energy consumption by socket
measured for ComprehensiveBench with 200 chares [3],
250 timesteps, and minimum and maximum task loads of
5 ms and 800 ms, respectively. Load balancing frequency
was set to 10 iterations.

Figure 1(a) shows the energy consumption for differ-
ent sockets when no LB algorithm (noLB) was used. In
all sockets we have a similar energy consumption. How-
ever, when using ENERGYLB, which computes the load
imbalance and changes the clock frequency used (see Fig-
ure 1(b)), we are able to save energy 236.7 Joules.

Figure 2 illustrates the execution time and energy con-
sumption measured by the Energy Daemon Tool for Com-
prehensiveBench. First, we present the execution time and
energy consumption for a baseline execution where no LB
algorithm was used (noLB), followed by the energy mea-
sured when using ENERGYLB only. Finally we compare
the energy consumption when using CHARM++ LBs and
them in conjunction with ENERGYLB.

When using ENERGYLB, the average power demand
measured during the execution was reduced from 26 W to
24.4 W in comparison to others LB. This reduction occurs
because ENERGYLB sets the frequency of some overloaded
processors to the maximum value available, resulting in a
higher power demand of these processors. Analogously, the

frequency of underloaded processors is set to the minimum
value possible (1.2 GHz) or a relative value, resulting in sev-
eral processors demanding less power, and thus, saving en-
ergy. Experimental results with this benchmark present en-
ergy savings between 4% and 13% when ENERGYLB was
used.

Others test were also performed using two variants of
ENERGYLB in [4]. The first one, called Fine-Grained En-
ergyLB (FG-ENERGYLB), is suitable for platforms com-
posed of few tens of cores that allow per-core DVFS.
The second one, called Coarse-Grained EnergyLB (CG-
ENERGYLB), is suitable for current HPC platforms com-
posed of several multi-core processors that feature per-chip
DVFS.

5. Conclusion

In this paper, we presented our initial efforts to combine
load balancing and DVFES in order to save energy. Our ap-
proach to global scheduling benefits from CHARM++’s load
balancing framework and enables the reduction of power
demand during the execution of imbalanced applications.

Future efforts focus on: implementing more ro-
bust mechanisms to decide when to balance load and/or
change clock frequencies; developing a hierarchical algo-
rithm to use all available cores in the platform; and vali-
dating the algorithms with different applications and plat-
forms.

References

[1] Y. Dong, J. Chen, and T. Tang. Power measurements and
analyses of massive object storage system. In International

(2]

(3]

Conference on Computer and Information Technology (CIT),
pages 1317-1322. IEEE, 2010.

L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng. Programming petascale applications with
CHARM++ and AMPIL. Petascale Computing: Algorithms
and Applications, 1:421-441, 2007.

L. V. Kale and S. Krishnan. CHARM++: A portable concur-
rent object oriented system based on C++. In Annual Confer-

ence on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 91-108. ACM, 1993.

(4]

(53]

E. L. Padoin, M. Castro, L. L. Pilla, P. O. A. Navaux, and J.-
F. Mehaut. Saving energy by exploiting residual imbalances
on iterative applications. In 21st International Conference on
High Performance Computing (HiPC) (awaiting publication),
pages 1-10, Goa, India, 2014.

G. Zheng, A. Bhatelé, E. Meneses, and L. V. Kalé. Periodic hi-
erarchical load balancing for large supercomputers. Interna-
tional Journal of High Performance Computing Applications,
25(4):371-385, 2011.

