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Abstract

Opportunistic Networks uses pair-wise contacts to share
and forward content without any prior knowledge of the
pre-existing infrastructure. In this context, optimizing data
dissemination among nodes is a paramount requirement.
Current solutions are often based on instantaneous contex-
tual information for routing decisions that do not take ac-
count of a possible future situation. In this paper, we present
a new approach of a smarter engine that exploits the predic-
tion of future values of context to improve routing in Oppor-
tunistic Networks. It uses Echo State Networks (ESN) for
prediction and Fuzzy Logic for decision making process.
We carried out simulations using an environment simula-
tor and achieved positive results.

1. Introduction

The new field of mobile application gives rise to sev-
eral challenges. One of these concerns is the use of mobile
computing as an underlying technology that can supply col-
laborative sensing data and social networking metadata for
these ubiquitous services in the context of Smart Cities. In
these wide-scale urban scenarios, just relying on wireless
infrastructures (e.g. cellular, WLAN, or WiMAX networks)
to provide services is not satisfactory, as it is very unlikely
that wireless infrastructures alone will be able to provide
enough bandwidth and coverage for the huge number of de-
vices spread throughout the environment [1]. Another im-
portant consideration is that current mobile computing ap-
plications are infrastructure-centric; this forces users to be
acutely aware of their connectivity environment, since there

are many applications that can only work when there is a
networking infra-structure available.

An alternative way of overcoming these limitations is
the use of Opportunistic Networks. Opportunistic Net-
works are a recent mobile networking paradigm that
stem from research into conventional Mobile Ad Hoc
NET-works (MANET). In this paradigm, the nodes are as-
sumed to be mobile, and the forwarding of messages
is based on the “Store, Carry and Forward” (SCF) con-
cept. Opportunistic Networks rep-resent the first attempt
to close the gap between human and network behav-
ior by adopting a user-centric approach to networking and
exploiting node mobility for users so that it can be re-
garded as an opportunity – rather than a challenge – to
improve data forwarding.

One fundamental problem in this context is how to route
messages from the source node to their destination in a suit-
able way (i.e. with high delivery rate, low latency and low
overhead), since end-to-end paths might be absent for the
whole life-time of the message. Thus, in this paper a new
approach is outlined that involves a smarter engine for rout-
ing in Opportunistic Networks. This employs Echo State
Networks (ESN) and Fuzzy Logic to make inferences about
context data, predict future values and make the most suit-
able routing decision. Our study is based on the hypothesis
that since each node has some contextual data that describes
its current situation, if it was possible to predict future val-
ues, we could infer the future situation of the node and thus
improve routing. In summary, the contributions made by
this paper are as follows: first of all, this is the first pa-
per to apply a lightweight neural network called Echo State
Network in the area of Opportunistic Networking. Second
we provide a novel engine architecture that deals with pre-
diction and uncertainty with acceptable results. Third, this



study extends our previous work [4] [2] [3]. As well as be-
ing original, this covers all the research findings made by
us in this area. The rest of this paper is structured as fol-
lows: The next section describes our proposed smarter en-
gine architecture; Section 3 describes our experiments and
analyzes the results; and, finally we conclude this paper in
Section 4.

2. Proposed Architecture

As shown above, a major problem in Opportunistic Net-
works is how to route messages between the nodes without
having a previous knowledge of the network topology. To
address this problem, we propose a new approach involv-
ing a smarter engine. Each node of the network runs this
embedded engine. Its main task is to collect current context
data, predict future values of context parameters and make
decisions about routing. In this study, we have incorporated
knowledge obtained from previous results to choose a con-
ceptually simple and computationally inexpensive kind of
neural network called Echo State Network. This is being
employed as the underlying technique for the Forecaster
module and Fuzzy Logic to deal with any uncertainty aris-
ing from the current and future context data in the Decision
Making module. The architecture of our smarter engine is
outlined in Figure 1 and its behavior is explained below.

Figure 1. Smarter Engine architecture.

It starts with the Contextual Information that represent-
ing information about the context of node. At a constant
time interval, Context Collector collects the data and stores
them in Contextual Graph, thus creating a new Layer 2 ver-
tex. Contextual graph underlies all data storage. It is a graph
structure with vertices arranged in layers representing dif-
ferent kinds of information.

The Inference module, use a set of internal variables to
make inferences about node situations. It draws on data col-
lected by the Context Collector and data stored in the Con-

textual Graph for this purpose. The information generated
by the Inference module will be used later by the Decision
Maker. It also runs maintenance routines like pruning old
data and indicating when the Context Collector and Fore-
caster should be run.

The Forecaster module implements an Echo State Net-
work (ESN) for prediction. ESN are a kind of three-layered
recurrent network with sparse, random, and (crucially), un-
trained connections within the recurrent hidden layer. When
the Inference module detects a sufficient amount of context
information, the Forecaster module is invoked. The Fore-
caster then attempts to find the most suitable network con-
figuration depending on the node situation. In the training
phase, the historical context data of the nodes is “pumped”
to the internal structures so that it can be used as input to
train the network. The internal global parameters of ESN
(i.e. size of reservoir, sparsity of the reservoir, spectral ra-
dius and leaking rate) are set and the network starts to run
by attempting to find a network configuration with a lower
Mean Squared Error (MSE). At every iteration, these values
are changed and the best network configuration is stored (on
average 810 different configurations are tested). After com-
pleting the training, the best network is saved and is ready
to predict future values in the exploitation phase. During ex-
ploitation phase, the structure with historical values is used
to “pump” the best network (found and saved in previous
phase) with some data steps and thus to activate the inter-
nal reservoir. Some stages later, the input from the historical
data is switched off to allow the network to predict values
by itself. There is a problem with regard to the question of
how to stop providing input because the network adapts to
the continuous input stream during the training phase. This
is carried out by adjusting output weights via a multiple lin-
ear regression which considers the input layer. If this input
is switched off during the exploitation phase, the reservoir
activity will decline quite fast (depending on the spectral ra-
dius and output feedback weights) and the network cannot
respond in the way it was trained to anymore. A solution
that was found was to use initial steps to activate the reser-
voir and when the input from the historical data is switched
off, the network itself predicts the output that will be used
as the next input step in a self-recurrent way. The predicted
values are stored at Contextual Graph as Layer 3 vertices.
At this point, the Inference module sets an internal variable
to show that the node is now running in smart mode and De-
cision Maker module could use the current context data with
these predicted data to improve routing decision.

Decision Maker runs when a message has to leave the
buffer in the node (due to a contact with another node). This
module decides if this message should be forwarded, deliv-
ered or remain at the local buffer. In simple terms, Deci-
sion Maker decides if the encountered node is a good “data
mule”. We used the term “potential” to represent the ca-



pacity of the node to be a good data mule. The strategy
used is quite simple: if the potential of the contacted node is
greater than the potential of the current node, then the mes-
sage is forwarded; otherwise, the message remains at the lo-
cal buffer (obviously the message is delivered if the encoun-
tered node is its destination). The question arising from this
approach is: how to calculate the potential of each nodes?
For this task, we applied Fuzzy Logic. The internal func-
tions of Decision Maker retrieve the all context values (cur-
rent, historical and predicted) of the current and contacted
node from Contextual Graph and use it as input for the
Fuzzy Inference System (FIS). The FIS uses internal com-
ponents to calculate the potential of each node. The poten-
tial values of nodes are used by Decisor in decision making
process.

3. Simulation and Experimental results

3.1. Simulation setup

Our simulations were carried out by using a ONE (Op-
portunistic Network Environment) Simulator. We chose a
timescale of 21,600 seconds = 6 hours for all the scenar-
ios. Each simulation scenario was run with a different num-
ber of nodes (10 for the first, 25 for the second, and 50, 75
and 100 for each subsequent group). Two groups were used:
pedestrians and cars. The pedestrian nodes moved between
0.5 and 1.5 Km/h, and had a Bluetooth device with a ra-
dio range of 20 meters and transmission speed of 2 Mbit/s.
The Car nodes moved between 10 and 50 Km/h and had
a Wi-Fi interface with a range of 50 meters and transmis-
sion speed of 10 Mbit/s. On average, the nodes generated
about one message every 25 to 35 seconds (total of 711) in
all of the experiments and the message lifetime was set at 24
minutes (1440 seconds). Some energy constraints were im-
posed on all the nodes during the simulation. All the nodes
started with a battery charge of 2400, with the battery being
recharged every 43,200 seconds. The energy expenditure of
other nodes by scan was set at 0.92 per second and the en-
ergy expenditure to send and receive a message was set at
0.08 per second. The context information of each node was
collected by our engine at intervals of 100 seconds.

The ESN was built using ESNJava software. It provides
a graphical interface which makes it easier to handle ESN
networks and an API to embed ESN in Java applications.
However, the ESNJava just handles situations where a se-
quence of values that must be learned (teacher-forced) are
received as input and the network is trained to reproduce
the desired dynamic properties for this original sequence. In
other words, the ESNJava only seeks to reproduce learned
input and does not provide predictive support. This restric-
tion was beat by making changes in the source code of ES-
NJava. The original code of ESNJava was changed to intro-

duce support for the network itself predicts the output that
will be used as the next input step in a self-recurrent way (as
introduced in description of Forecaster module at section
2). In contrast of approaches presented in some of our previ-
ous work which used a fixed configuration for all the nodes,
in this implementation of our smarter engine, each node of
the network builds its own ESN with the most appropriate
configuration for its context. This is carried out by testing
different network configuration until the best one (i.e. the
one with minimal MSE) is found. The Figure 2 graphically
represent this process indicating that for such node the best
network configuration had network size = 10 and spectral
radius = 0.77. As each node executes this process, result-
ing in specific configuration, we have not shown configura-
tion results for each node, but only the results from the av-
erage of all the nodes. On average, around 104 steps were
used in the training phase and 54 steps in the exploitation
phase. The MSE in the training phase ranged from 4.01e-08
to 4.55e-10 and in the exploitation phase ranged from 1.21e-
7 to 7.67e-8. The internal size of the network ranged from
10 to 20 nodes and the spectral radius from 0.77 to 0.85.
The only value that was fixed for all the nodes was the spar-
sity of the reservoir = 1 and leaking rate = 0.

Figure 2. Selection of best network configu-
ration

The Fuzzy Inference System (FIS) used in the Decision
Maker module was implemented using JFuzzyLogic library.
The following linguistic variables were defined to form the
FIS that was used to calculate the node potential: current
power, current speed, total distance traveled from last point,
overall distance traveled, current coordinates, last coordi-
nates, current buffer usage, current number of carried mes-
sages, total number of forwarded messages, current num-
ber of neighboring nodes, and total number of connections.
These variables represent different aspects of the context
and each has linguist values (“low”, “medium”, “high”) as-
sociated with a Gaussian membership function with center
and width values scaling in accordance with the magnitude
of the context data. The variable “potential” which is used



as the output of FIS, employs a three Triangular member-
ship function with values ranging from 0 to 100. The COG
(Center Of Gravity) was used as a defuzzification method
and the default value is 0 when no rule is activated in the
defuzzification.

3.2. Experimental results

We conducted a set of experiments using the simulation
setup outlined in Section 3.1. The purpose of our experi-
ments was to measure the performance of our smarter en-
gine by increasing the number of nodes in the network. We
are seeking to test the impact of the number of nodes on
the number of messages created, started, relayed and deliv-
ered, as well as on the overhead ratio of the bandwidth. The
results are shown in Figure 3.

Figure 3. Performance of the smarter engine
with a different number of nodes

As expected, the number of delivered messages increases
with the increment of the number of nodes. In the scenario
with 100 nodes, the total of 79 messages is a good amount,
compared with some other popular protocols used in Op-
portunistic Networks. One factor that drew our attention
was the number of started and relayed messages. We be-
lieve that this can be attributed to the fact we are only re-
moving messages from the local buffer when the time to
life (TTL) of messages has been reached and not when a
message is forwarded. Hence, the same message is being
forwarded to several nodes. This conservative strategy of
buffer management should be reviewed because, as well as
generating more traffic in the network, it requires a greater
expenditure of power from the nodes. However, despite the
high overhead, this amount can be considered acceptable.
One factor not reported in the chart is the computational
cost of ESN. Even when each node used in the simulation
testing, had, on average, 810 different configurations to find
the best network, the impact of the processor load was min-
imal. We believe that its lightweight feature was the main
differential of ESN when compared with all the other ma-
chine learning approaches that we have tested in our previ-

ous work. On the basis of these results it can be concluded
that although we need to improve buffer management to re-
duce the impact on the overhead metrics, our smart engine
had a satisfactory performance in terms of the number of
delivered messages and could be used in wide-scale urban
scenarios where network infrastructure is intermittent or un-
available, such as Smart Cities.

4. Conclusions

This paper has outlined a new approach to improve rout-
ing in Opportunistic Networks, using Echo State Networks
(ESN) and Fuzzy Logic. Its main characteristic is the use
of current and predicted context data for decision-making.
We have successfully demonstrated the feasibility of inte-
grating several techniques in one engine with satisfactory
results since this led to a reasonable performance in terms
of delivery messages. This suggests that our initial hypothe-
sis to use prediction for better routing decisions has proved
to be valid and provides strong grounds for undertaking fur-
ther research. The experiments showed that ESN could be
considered the best technique to be used as underlying for
forecasting. In addition to achieving an impressive predic-
tive performance, ESN has a low computational cost com-
pared with all the other approaches that we already applied.
On the basis of these findings, we argue that the proposed
engine is suitable to be used in scenarios where the network-
ing infrastructure is not always available, such as Smart
Cities. Moreover, it should be noted that this is the first pa-
per to demonstrate the feasibility of using ESN in Oppor-
tunistic Networks. For future work, we are seeking alterna-
tive means of constructing fuzzy sets and rules “on the fly”,
depending on the situation in which the node is immersed.
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