Scheduling by Work-Stealing in Hybrid Parallel Architectures”

Vinicius Garcia Pinto, Nicolas Maillard
Parallel and Distributed Processing Group (GPPD)
Institute of Informatics - Federal University of Rio Grande do Sul (UFRGS)
Porto Alegre - RS - Brazil
{vgpinto, nicolas} @inf.ufrgs.br

Abstract

Nowadays, parallel computing systems have been based
on multicore CPUs and specialized coprocessors, such as
GPUs, due to the limits achieved by traditional architec-
tures. In order to obtain the expected performance in these
systems, the workload must be distributed and redistributed
in an efficient way through some technique of scheduling,
like work-stealing. This work aims to propose, implement
and validate a scheduling approach based on work-stealing
in parallel systems with CPUs and GPUs simultaneously.
The results show that our approach and Cilk have very close
performance. Furthermore, the use of both CPUs and GPUs
provides clear improvement in performance due to better
utilization of processing resources provided by the work-
stealing scheduling.

1. Introduction

Until few years ago, the performance improvement of
computers architectures was related with the decrease in
the size of transistors and the rise of clock frequency. This
improvement was based in the hardware update without
changes in software [1, 2]. However, nowadays this model
achieved physical limits and computers’ performance is im-
proved by addition of more processors or cores in a single
chip. Another way used to improve the computers perfor-
mance is the use of specialized coprocessors or accelera-
tors, like GPUs (Graphic Processing Units) [3].

Today’s High Performance Computing systems are
also composed in a hybrid model. These systems com-
bine general-purpose homogeneous multicores with spe-
cialized coprocessors [4].

Existing programming tools for parallel computing, in
special in hybrid architectures, imply in high program-
ming efforts to make efficient use of all processing re-

* This work was supported in part by FAPERGS, CNPq and CAPES.

sources available in the system. These models rely on low
level operations such as explicit locks and synchronization
points [5, 6].

Task parallelism, implemented by Cilk [7], OpenMP
3 [8] and Intel TBB [9], is considered a generic and high-
level model for these new hybrid architectures. However,
using this model makes necessary an efficient task sched-
uler to optimizes the concurrent execution of tasks at run-
time [6, 10]. Work-Stealing [13] is an efficient scheduling
technique for task parallelism adopted by Cilk and Intel
TBB.

In this paper we present and evaluate an approach to
scheduling tasks by work-stealing in hybrid architectures
that use CPU and GPU resources simultaneously.

The remainder of this paper is organized as follows: Sec-
tion 2 presents a review about task parallelism concepts.
Section 3 presents our approach for scheduling tasks in hy-
brid systems. Section 4 presents our experimental evalua-
tion. Finally, Section 5 presents the conclusions and future
works.

2. Background

In this section, we present a review about task paral-
lelism concepts and work-stealing scheduling.

Tasks: are computation units into which the entire com-
putation is divided by means of decomposition. There may
be dependencies among some tasks and tasks may not be all
of the same size [11, 12].

Task Parallelism: is the type of parallelism that is natu-
rally expressed by independent tasks in a task-dependency
graph. Parallel quicksort, sparse matrix factorization and
other algorithms derivated via divide-and-conquer decom-
position are examples of algorithms that can be described
in this model [12].

Work-stealing: is a distributed algorithm for dynamic
scheduling. In work-stealing scheduling, idle processing
units, called thieves, steal tasks from busy processing units,

called victims. Each processing unit has its own deque
(double-ended queue) of ready tasks [13].

The work-stealing algorithm has been adopted as an ef-
ficient technique for scheduling and dynamic loading dis-
tribution in several parallel programming tools for mul-
ticore CPUs, such as Cilk, Intel TBB and KAAPI [14].
There are several preliminary works that aim to extend the
“work-stealing” scheduler for specific scenarios, for exam-
ple: adaptive work stealing [15], idempotent work steal-
ing, scalable work stealing [16] and enhanced cilk sched-
uler [17]. In the context of GPU processing, recent stud-
ies [18, 19, 20] have demonstrated the applicability of this
technique for scheduling and load balancing among stream-
ing multiprocessors inside GPU.

3. Our Approach

Our approach to offer work-stealing scheduling in hy-
brid architectures consists of three main parts: a Task com-
ponent, a set of TauskProcessors and a Manager component.

e Manager component controls the creation of TaskPro-
cessor components, the submission of new Task com-
ponents and the submission of Task components to the
wait queue.

e TaskProcessor components are used to execute Task
components. Each TaskProcessor has a deque of Tasks
to process and a private queue of waiting Tasks.

e A Task component represents a unit of computation.
Each Task component has, at least, three methods: a
runCPU() method that contains the CPU implementa-
tion of the task, a runGPU() method that contains the
GPU implementation and a task termination method
called runTermination().

A set of TaskProcessors represents the processing re-
sources available in the hybrid architecture. Usually, there
is one TaskProcessor for each CPU core. When GPU re-
sources are available in the system, one(or more) TaskPro-
cessors are assigned to control these GPUs. When a
TaskProcessor becomes idle, it tries to steal some task from
another TaskProcessor.

3.1. Prototype implementation

A prototype of this approach was implemented in C++
using the Boost C++ library [21]. The GPU tasks are im-
plemented using CUDA [22] and Thrust library [23]. Fig-
ure 1 presents an example to define a Task using our proto-
type. Figure 2 presents a code example of a task implemen-
tation.

class Sort :
public:
Sort (TYPE+ input, int sz, int gr);
virtual void runCPU();
virtual void runGPU();
virtual void runTermination () ;
private:
void mergesortSeq (TYPEx input, int sz);
void mergeSeq(TYPEx input, int sz);
TYPE* input;
int size, grain;

public TaskCPUGPU {

Figure 1. Code example to define a Task in
our prototype

void Sort::runCPU() {

int mid;

if (size > grain) {
mid = size / 2;
Sort *ms;

ms = new Sort(input, mid,

this —taskSub (ms);

ms = new Sort(input + mid, size — mid,
grain);

this —taskSub (ms);

this —>tasksAsyncWaitTerm () ;

} else {

this —>mergesortSeq (input, size);
}

void Sort::runGPU() {
/% CUDA code x/

}

void Sort::runTermination () {
Merge *merge;
merge = new Merge(input, size);
this —taskSub (merge) ;
this —>tasksAsyncWait () ;

grain);

Figure 2. Code example of Task implementa-
tion in our prototype

4. Experimental Evaluation

This section describes the experimental evaluation of
the prototype that implements our approach for scheduling
tasks by work-stealing in hybrid architectures.

4.1. Experimental Setup

Experiments were conducted on a hybrid platform. This
system is composed of a Intel Core 17 930 quad-core CPU
running at 2.80GHz with 12 GB of DDR3-1066 MHz RAM.
A NVIDIA GTX480 GPU card with 480 CUDA cores run-
ning at 1.4GHz with 1.5 GB of GDDR5 RAM is attached
through a PCI-E 2.0 bus. This platform runs a Ubuntu 11.10

GNU/Linux operating system, with Linux kernel 3.0.0,
NVIDIA driver 4.1 and CUDA 4.1.

4.2. Benchmark Application 1

The first benchmark application consists on a transfor-
mation. A transformation is a simple algorithm that applies
an operation to each element in an input array and then
stores the result in an output array.

This benchmark uses a recursive algorithm derived via
divide-and-conquer decomposition to generate many paral-
lel tasks. At each step, this algorithm divides the input array
into two smaller sub-arrays and assigns these sub-arrays to
new tasks. This recursive division stops when the input ar-
ray size reaches a threshold value. Our implementation uses
different threshold values for CPU and GPU tasks.

4.3. Benchmark Application 2

The second benchmark application consists on a sorting.
A sorting is an algorithm that puts elements of an input ar-
ray in a certain order and then stores the result in an output
array.

This application uses a hybrid merge sort algorithm
derived via divide-and-conquer decomposition to generate
many parallel tasks. This algorithm divides the input array
into two smaller sub-arrays and assigns these sub-arrays to
new tasks. When these two new tasks complete their work, a
new task is created to merge the two sorted sub-arrays. This
recursive division stops when the input array size reaches a
threshold value. If sub-array size is smaller than the thresh-
old value then another sort algorithm is used (e.g., insertion
sort, introsort sort, radix sort). For this reason, we call this
algorithm as hybrid merge sort. Our implementation of hy-
brid merge sort algorithm also uses different threshold val-
ues for CPU and GPU tasks.

4.4. Results

Results presented in this Section were obtained consid-
ering an average of one hundred executions. The graphs
presented in Figures 3 and 4 show a performance compar-
ison between our prototype and Cilk with benchmark ap-
plications 1 (4.2) and 2 (4.3) using only CPUs. The input
sizes used were 268435456 elements for application 1 and
134217728 elements for application 2. The graph of Figure
5 shows a performance comparison of our prototype with
benchmark application 2 using both CPUs and GPU and
using only CPUs. The input size used was 16777216 ele-
ments.

Transform - 4 CPUs - Size 268435456

-+ Cilk
- Prototype

Threshold

Figure 3. Performance Cilk vs Prototype -
Benchmark Application 1

Sort - 4 CPUs - Size 134217728

-+ Cilk
—=— Prototype

Threshold

Figure 4. Performance Cilk vs Prototype -
Benchmark Application 2

5. Conclusions and Future Works

This work presented and evaluated an approach for
scheduling tasks by work-stealing in hybrid architec-
tures. Results showed that the performance of our proto-
type is very close to the performance of Cilk when we
only use CPUs for computations. Furthermore, these re-
sults show that the use of both CPUs and GPUs simul-
taneously provides a clear improvement in the perfor-
mance.

For future work, we plan to evaluate the performance of

Sort -4 CPUs 1 GPU - Size 16777216

= Prototype CPU
m Prototype CPU+GPU

0
16777216 8388608 4194304 2097152 1048576 524288 262144 131072 65536
Threshold

Figure 5. Performance Prototype with CPUs
only vs Prototype with CPUs + GPU - Bench-
mark Application 2

our prototype with other benchmarks and compare the per-
formance with other implementations that use only GPUs.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

D. Callahan, “Design Considerations For Parallel Program-
ming,” MSDN magazine, vol. 23, pp. 74 — 85, Oct. 2008.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen,
J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the par-
allel computing landscape,” Commun. ACM, vol. 52, pp. 56—
67, Oct. 2009.

S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense
linear algebra for hybrid GPU accelerated manycore sys-
tems,” Parallel Comput., vol. 36, pp. 232-240, June 2010.
M. Kistler, J. Gunnels, D. Brokenshire, and B. Benton,
“Petascale Computing with Accelerators,” in Proceedings of
the 14th ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, PPoPP °09, (New York, NY,
USA), pp. 241-250, ACM, 2009.

E. A. Lee, “The problem with threads,” Computer, vol. 39,
pp- 33-42, May 2006.

H. Vandierendonck, P. Pratikakis, and D. S. Nikolopoulos,
“Parallel programming of general-purpose programs using
task-based programming models,” in Proceedings of the 3rd
USENIX conference on Hot topic in parallelism, HotPar’11,
(Berkeley, CA, USA), p. 13, USENIX Association, 2011.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou, “Cilk: an efficient multi-
threaded runtime system,” in Proceedings of the fifth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, PPOPP *95, (New York, NY, USA), pp. 207-
216, ACM, 1995.

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]
(20]
(21]

(22]
(23]

O. Architecture, “OpenMP Application Program Interface
v3.0,” tech. rep., 2008.

J. Reinders, Intel threading building blocks: outfitting C++
for multi-core processor parallelism. O’Reilly Series,
O’Reilly, 2007.

P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lums-
daine, “PFunc: modern task parallelism for modern high
performance computing,” in Proceedings of the Conference
on High Performance Computing Networking, Storage and
Analysis - SC ’09, (New York, New York, USA), p. 1, ACM
Press, Nov. 2009.

T. Mattson, B. Sanders, and B. Massingill, Patterns for
parallel programming. Software patterns series, Addison-
Wesley, 2005.

A. Grama, Introduction to Parallel Computing. Pearson Ed-
ucation, Addison-Wesley, 2003.

R. D. Blumofe and C. E. Leiserson, “Scheduling multi-
threaded computations by work stealing,” in Proceedings of
the 35th Annual Symposium on Foundations of Computer
Science, SFCS 94, (Washington, DC, USA), pp. 356-368,
IEEE Computer Society, 1994.

T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors,” in Proc. of The 2007 in-
ternational workshop on Parallel symbolic computation,
PASCO’07, (London, CAN), ACM, 2007.

K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu, “Adap-
tive work-stealing with parallelism feedback,” ACM Trans-
actions on Computer Systems, vol. 26, pp. 1-32, Sept. 2008.
J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha, “Scalable work stealing,” in Proceedings of
the Conference on High Performance Computing Network-
ing, Storage and Analysis - SC "09, (New York, New York,
USA), p. 1, ACM Press, Nov. 2009.

M. A. Bender and M. O. Rabin, “Scheduling Cilk mul-
tithreaded parallel programs on processors of different
speeds,” in Proceedings of the twelfth annual ACM sympo-
sium on Parallel algorithms and architectures, SPAA 00,
(New York, NY, USA), pp. 13-21, ACM, 2000.

J. Toss and T. Gautier, “A New Programming Paradigm for
GPGPU.” To be published in the Proceedings of the 18th
International Euro-Par Conference on Parallel Processing
(Euro-Par 2012).

D. Cederman and P. Tsigas, “On Dynamic Load Balancing
on Graphics Processors,” Technology, pp. 57-64, 2008.

D. Cederman and P. Tsigas, “Dynamic Load Balancing Us-
ing Work-Stealing,” in GPU Computing Gems: Jade Edition
(W.-M. W. Hwu, ed.), pp. 485-499, Elsevier, 2011.

B. Ling, The Boost C++ Libraries. XML Press, 2011.
NVIDIA, “CUDA C Programming Guide,” tech. rep., 2011.
J. Hoberock and N. Bell, “Thrust: A parallel template li-
brary,” 2010. Version 1.3.0.

