
An overview of techniques for predicting
the performance of GPU accelerated applications

Rafael Keller Tesser, Philippe O. A. Navaux
Instituto de Informática, Universidade Federal do Rio Grande do Sul - Brazil

{rktesser,navaux}@inf.ufrgs.br

Abstract

The ability to predict the performance of applications in
large-scale parallel systems is essential. One of the main in-
centives for this is the high cost of executing non-production
tasks on these systems. An entity may also want to predict
the performance in a system that does not yet exist. One
popular alternative for increasing a systems performance is
the use of accelerators. This created the need for new meth-
ods for performance prediction, that take into account the
use of these components. In this paper, we will present some
recent works in the area of performance prediction in sys-
tems with accelerators. More specifically, we will focus on
systems that use Graphics Processing Units (GPUs) as ac-
celerators.

1. Introduction

The fastest computer in the world today, according to
the Top500 list [1], is the Sequoia supercomputer, from
the Lawrence Livermore National Laboratory (LLNL), in
the USA. This system scored 16.32 petaflops in the LIN-
PACK benchmark. One petaflop means 1015 floating point
operations per second (FLOPS). The scientific and engi-
neering community, however, still needs more performance
[5]. The amount of data they generate is rapidly reaching
the exabytes scale. Additionally, the computational power
expected for processing this data is in the exaflops (1018

FLOPS) range. The high-performance computing commu-
nity expects exascale performance to be reached in 2018
[3].

One challenge for attaining such performance lies in the
processor technology. According to [5]: “...scaling in the
number of transistors is expected to continue through the
next decade”. However, “clock rates are no longer keep-
ing pace, and may in fact be reduced ... to reduce power
consumption”. As a result, exascale systems “will likely be
composed of hundreds of millions of arithmetic logic units
(ALUs)”. The greatest challenge, however, is the energy

consumption. The Defense Advanced Research Projects
Agency (DARPA) of the United States of America has
set power limit of 20MW for high-performance computers
[11]. Sequoia already consumes more than 7.8 MW.

One way to increase performance without increasing the
clock rate of the CPU is to use accelerators. These compo-
nents can run parts of the application with a higher perfor-
mance than the CPU. Examples of accelerators are Field-
programmable Gate Arrays (FPGAs), Graphics Processing
Units (GPUs), and the CELL processor. Systems that em-
ploy such components are called heterogeneous or hybrid
systems.

Currently, the most used kind of accelerator are GPUs.
Those systems have several advantages, like high degree
of thread-level parallelism, higher energy efficiency and
higher memory bandwidth than the CPU. Additionally, the
GPUs are already going toward meeting the two challenges
we pointed. First, they have hundreds of processing units,
running at relatively low clock rates. Second, they are more
energy-efficient than the CPUs that are usually employed in
high-performance systems.

Due to the high cost of ownership, running applications
in large-scale systems is very expensive. This leads to a
big push to improve performance of these applications. The
problem is that performance measurements also use ma-
chine time. Therefore, it costs money that the owner of the
machine is not willing to waste with non-production tasks.
One way to overcome this problem is to use prediction tech-
niques to estimate the performance of the applications with-
out actually running them in the target system.

Taking into account the context we presented above, we
see an opportunity for research of performance prediction
involving hybrid systems. More specifically, we intend to
model the performance of accelerated applications. We in-
tend to use this model to develop a model-based simulator.
We also want to integrate this performance predictor with a
full system simulator.

Our work is still in the planning stage. Currently, we are
studying the state of the art on performance prediction, with
focus on hybrid systems. In this paper we will present some



recent works on the performance prediction of GPU accel-
erated applications.

In the next section we deal with hybrid systems, with
a special focus on GPU accelerators. In section 3 we talk
about performance prediction. In subsection 3.1 we present
recently published work on performance prediction of GPU
applications. Finally, in section 4, we wrap up the paper and
present our conclusions.

2. Hybrid systems

The use of co-processors, like GPUs and FPGAs, to
speed up high-performance computers has been a trend for
some years now. These components are called accelera-
tors. Most of these components have different architectures
than the main CPU in the system. So we can say that ma-
chines that employ them have heterogeneous architectures.
As each node systems has a combine general-purpose CPUs
with accelerators, we can say that they are hybrid systems.

Currently, the most popular kind of accelerator being
used in HPC systems are the GPUs [8]. In the subsection
below we will present some details about the use of GPU as
accelerators for high-performance applications.

2.1. GPUs as accelerators for HPC

The design of GPUs was shaped by the video game in-
dustry, which expects a massive number of calculations to
be made for each video frame. The solution was to optimize
the execution throughput of a massive number of threads.
The resulting hardware takes advantage of the large number
of threads to maintain the processor occupied when some of
them are waiting for memory operations to complete [10]

GPUs can be seen as many core processors. This kind of
architecture focuses on execution throughput. A NVIDIA
Geforce GTX 280 GPU has 240 cores. Each of these cores
is a heavily-multithreaded processor, that shares its control
and instruction cache with seven other cores [10].

One advantage of GPUs over CPUs is their energy ef-
ficiency. DARPA has specified 20 MW as the reasonable
power consumption of an exascale system [11]. This would
require an efficiency of 20 picojoules (pJ) per floating point
operation. According to [8]: “A modern CPU (Intel’s West-
mere) consumes about 1.7 nanojoules (nJ) per floating-point
operation... A modern Fermi GPU consumes about 20 pJ
per FLOP”.

Another advantage of GPUs over CPUs is the mem-
ory bandwidth. For example, the NVIDIA GT 200 chip
supports about 150 GB/s. Microprocessor system memory
bandwidth will probably not grow beyond 50GB/s until
2013 [10].

Until 2006, GPUs were very hard to use for HPC, be-
cause programmers needed to use graphic application pro-

Shared Memory

Read-Only Data Cache

Interconnect Network

Register File

Instruction cache

Warp SchedulerWarp SchedulerWarp SchedulerWarp Scheduler

DispatchDispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch

SP core ld/st SFUDP core

Figure 1. Simplified illustration of a stream
multiprocessor

gramming APIs. In 2007 NVIDIA released CUDA [12],
which allowed the programmers to program GPU applica-
tions using the C/C++ programming language. OpenCL [9]
is a cross-platform parallel computing API based on the C
language. Different from CUDA, which is vendor-specific,
OpenCL supports multiplatform and multivendor portabil-
ity. This advantage, however, comes at the cost of a more
complex programming model.

In the next subsections we will touch some aspects of the
GPU’s architecture and programming model. For the sake
of brevity we will focus on the upcoming NVIDIA Kepler
GK110 architecture[13] and on the CUDA framework.

2.1.1. GPU Architecture A typical GPU has a large
number of cores, capable of executing a massive num-
ber of threads in parallel. Another common characteristic
is the presence of a memory hierarchy that focuses on im-
proving the throughput of data transfers. The upcoming
NVIDIA Kepler GK110 GPU has 15 streaming multi-
processors (SM), which share a global memory. Figure 1
shows a simplified illustration of one of these SMs.

Each SM is composed of several processing units. In
the Kepler GK110, each SM has 192 single precision (SP)
cores, and 64 double precision (DP) units, 32 special func-
tion units (SFU) and 32 load/store (ld/st) units. All the cores
in a SM can access a shared memory and a read-only data
cache. Additionally, each SM has a register file to store
thread specific variables.

2.1.2. GPU Programming model A typical GPU pro-
gram contains code to be executed on the host CPU
and on the GPU. Functions that will be executed on the



GPU are called kernels in CUDA. These kernels gener-
ate a large number of parallel threads which are collec-
tively called a grid. The grid is further broken into one
or more thread blocks. All blocks in a grid have the same
number of threads. During execution, each block is as-
signed to a streaming microprocessor. Once assigned to
the SM, the block is further broken into warps. Warp is
the unit of thread scheduling in SMs. When a warp exe-
cutes a long-latency operation, like a memory access, an-
other warp can be selected for execution. The work done by
this new warp will hide the latency in the previously sched-
uled thread’s operation.

In each cycle, the hardware will execute the same in-
struction for all threads in a warp. This is called single-
instruction, multiple-thread (SIMT) execution. To improve
parallelism, it is important to avoid divergence in the code.
It is also important to make good use of the memory hierar-
chy. One aspect that is crucial to the performance are the ac-
cesses to shared memory. The hardware is projected to im-
prove the access to contiguous addresses in this memory,
by issuing only one memory request and fetching the data
in parallel. So, it is interesting that the threads in a warp ac-
cess contiguous regions in the shared memory. This is called
a coalesced memory access.

3. Performance prediction

For expensive large-scale systems, execution cost
is large, and often dominant component of total cost
[6]. So, it is important to focus in optimizing perfor-
mance. The problem is that these same costs make it too
expensive to use these systems for performance tuning ex-
periments.

To overcome this problem, the developer needs to use
performance estimation techniques. The technique that will
be used depends on the required accuracy and on the avail-
able resources. The choices are [6]: analytical modeling, cy-
cle accurate simulation, and model based simulation.

Analytical modeling uses purely analytical expressions
to model application performance. With this technique, one
must be careful to balance the number of parameters and
the required accuracy. More parameters mean more accu-
racy. On the other side, too many parameters can make the
model too complex to use. Additionally, “the high-level in-
sight that can be gained from the model is generally higher
with less parameters” [6].

Cycle-accurate simulation is very accurate, but it is of-
ten thousands of times slower than the actual execution, and
consumes significant memory resources [6]. Additionally,
the low level of the provided information can make it diffi-
cult to get some insight on a higher level.

Model-based Simulation is a more abstract (less de-
tailed) form of simulation. Its running time can be less than

the actual execution time of the application, while still cap-
turing accurately important details of the application’s exe-
cution.

3.1. Performance prediction for GPU applications

As part of our research we are studying the state-of-the
art on the performance prediction of GPU accelerated appli-
cations. Below, we present some recent works in this area.

Hong and Kim [7] proposed a model to estimate the exe-
cution time of massively parallel programs in a GPU. Their
goal was “to provide insights into the performance bottle-
necks of parallel applications on GPU architectures”. The
basis for their analytical model is that estimating the cost
of memory operations is the key for estimating the perfor-
mance of GPGPU applications. They estimate the number
of parallel memory requests that can be executed concur-
rently by the application. They also calculate how much
computation can be done by other warps while one warp
is waiting for memory values. Using these two variables,
the authors estimate the actual cost of the memory requests,
therefore estimating the execution time of the application.

Schaa and Kaeli [14] proposed a methodology to pre-
dict the execution time on GPUs while varying their num-
ber and the size of the input data. Their objective is to
help researchers to choose the most appropriate GPU dis-
tribution for their application, without the need to buy new
hardware or modify the code for multiple GPUs. The au-
thors take into account two kinds of multiple-GPU config-
urations: shared-system GPUs and distributed GPUs. They
present a methodology to model the CPU and GPU execu-
tion, the PCI express transfer cost, disk paging costs, and
network communication cost. Using these models, the au-
thors claim to be able to predict execution times for vari-
able data sets and numbers of GPUs.

Baghsorkhi et al [2] presented a technique to generate
a model of the execution of GPU applications. Their tech-
nique is based on an abstract representation of the program,
called work flow graph (WFG). This is an extension of the
program dependence graph (PDG). They use a technique
called symbolic evaluation in certain parts of the code. This
way they determine loop bounds, data access patterns, con-
trol flow patterns, etc. This information is useful for es-
timating the effects of control flow divergence, memory
bank conflicts and memory coalescing. The WFG is built
from the PDG, and is augmented with the information ob-
tained through symbolic evaluation. Additionally, the arcs
are weighted according to hardware characteristics. Accord-
ing to the authors, their technique can be used to automati-
cally extract the performance model from a kernel code.

Zhang and Owens [15] developed a micro-benchmark
based performance model for NVIDIA GPUs. Their goal
is to predict the benefits of potential program optimizations



and architectural improvements. Their technique is based
on simple throughput models for the instruction pipeline,
shared memory and global memory costs. These models are
derived from the results of micro-benchmarks that are ex-
ecuted on the GPU. Their model is based on native GPU
code. They use a disassembler on the original binaries,
instrument the code, and then reassemble the instructions
back to binary code. Additionally, they use the Barra GPU
simulator [4], to gather dynamic execution information on
how many times each instruction is executed.

Barra [4] is a simulator of Graphic Processor Units
(GPUs) for general purpose processing. It receives as in-
put CUDA executables. Barra emulates the GPU and gen-
erates detailed statistics about the execution of applications.
The simulator emulates the Tesla ISA, therefore it is capa-
ble of running native GPU code.

4. Conclusion

The high performance community aims to achieve ex-
ascale performance. The main obstacle in their path is en-
ergy consumption. The excessive power usage has already
lead to difficulties in increasing processor clock rates. This
resulted in a major focus on multicore systems. Another
consequience was that the community began to explore the
use of co-processors, called accelerators, to increase perfor-
mance.

The need for increasing performance raises the need to
tune it to the target system. The problem is that the cost-
of-ownership of a large scale system makes it too expen-
sive to run performance experiments in the production en-
vironment. The solution is to use prediction techniques to
estimate the performance of the applications. With the ad-
vent of performance accelerators, we need new prediction
schemes that take these components into account.

GPU is the most popular kind of accelerator. We pre-
sented some works that use analytical modeling to esti-
mate the performance of GPU applications. We also pre-
sented a simulator, that emulates the execution of the appli-
cation on a GPU, in order to obtain performance statistics.
While these are interesting works, there isn’t yet a widely
accepted prediction technique for GPU applications perfor-
mance evaluation.

We see an opportunity to explore other approaches to
performance prediction of GPU applications. More specifi-
cally, we believe we can use model based simulation to esti-
mate GPU applications performance. Additionally, it would
be interesting to study ways to use profiling information in
order to predict the performance of these applications in dif-
ferent hardware configurations. Another promising research
subject would be the integration of the simulation of the
GPU applications with full-system simulation.

References

[1] TOP500 Supercomputing Sites, 2012. Available at:
<http://www.top500.org/>. Accessed in July 2012.

[2] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and
W.-m. W. Hwu. An adaptive performance modeling tool for
gpu architectures. SIGPLAN Notices, 45(5):105–114, Jan.
2010.

[3] D. L. Brown and P. M. Ed. Scientific grand
challenges: Crosscutting technologies for com-
puting at the exascale. Technical report, U.S.
Department of Energy, 2010. Avalilable at:
<http://science.energy.gov/ /media/ascr/pdf/program-
documents/docs/crosscutting grand challenges.pdf>. Ac-
cessed in May 2012.

[4] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A
parallel functional simulator for gpgpu. In Modeling, Analy-
sis Simulation of Computer and Telecommunication Systems
(MASCOTS), 2010 IEEE International Symposium on, pages
351 –360, aug. 2010.

[5] J. Dongarra, P. H. Beckman, et al. The international exas-
cale software project roadmap. International Journal of High
Performance Computer Applications, 25(1):3–60, 2011.

[6] T. Hoefler, W. Gropp, W. Kramer, and M. Snir. Performance
modeling for systematic performance tuning. In State of the
Practice Reports, SC ’11, pages 6:1–6:12, New York, NY,
USA, 2011. ACM.

[7] S. Hong and H. Kim. An analytical model for a gpu architec-
ture with memory-level and thread-level parallelism aware-
ness. In Proceedings of the 36th annual international sympo-
sium on Computer architecture, ISCA ’09, pages 152–163,
New York, NY, USA, 2009. ACM.

[8] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and
D. Glasco. Gpus and the future of parallel computing. IEEE
Micro, 31:7–17, 2011.

[9] Khronos Group. The OpenCL Specification
(version 1.2), November 2011. Available at
<http://www.khronos.org/registry/cl/specs/opencl-
1.2.pdf>. Accessed in May 2012.

[10] D. B. Kirk and W.-m. W. Hwu. Programming Massively Par-
allel Processors: A Hands-on Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2010.

[11] P. Kogge. The tops in flops. Spectrum, IEEE, 48(2):48 –54,
february 2011.

[12] NVIDIA Corporation. Nvidia cuda c programming guide,
2012.

[13] NVIDIA Corporation. NVIDIA’s next generation CUDA
computer architecture: Kepler GK110, 2012. Available
at: <http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf>.

[14] D. Schaa and D. Kaeli. Exploring the multiple-gpu de-
sign space. In Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1 –12, may
2009.

[15] Y. Zhang and J. Owens. A quantitative performance analysis
model for gpu architectures. In High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Sympo-
sium on, pages 382 –393, feb. 2011.


