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(a) Photograph (b) Low-pass Gaussian (c) Modified Laplacian of Gaussian

(d) High-pass enhancer (Butterworth) (e) Band-pass enhancer (Butterworth) (f) Tiger’s right eye details (a)–(e)

Figure 1: A variefy of high-order recursive filters applied by our method to the photograph in (a). For these examples, non-
uniform sampling positions are computed using an edge-aware transform. Thus, the resulting filters preserve the image structure
and do not introduce visual artifacts such as halos around objects. The graphs in the insets show the filter’s impulse response in
blue, and its frequency response (Bode magnitude plot) in orange.

Abstract
We present a discrete-time mathematical formulation for applying recursive digital filters to non-uniformly sam-
pled signals. Our solution presents several desirable features: it preserves the stability of the original filters; is
well-conditioned for low-pass, high-pass, and band-pass filters alike; its cost is linear in the number of samples
and is not affected by the size of the filter support. Our method is general and works with any non-uniformly sam-
pled signal and any recursive digital filter defined by a difference equation. Since our formulation directly uses the
filter coefficients, it works out-of-the-box with existing methodologies for digital filter design. We demonstrate the
effectiveness of our approach by filtering non-uniformly sampled signals in various image and video processing
tasks including edge-preserving color filtering, noise reduction, stylization, and detail enhancement. Our formula-
tion enables, for the first time, edge-aware evaluation of any recursive infinite impulse response digital filter (not
only low-pass), producing high-quality filtering results in real time.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Image Processing and
Computer Vision—Enhancement
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1. Introduction

Digital filters are fundamental building blocks for many im-
age and video processing applications. Recursive digital fil-
ters are particularly important in this context, as they have
several desirable features: they can be evaluated in O(N)-
time for N pixels, being ideal for real-time applications;
they can represent infinite impulse response (i.e., the value
of a pixel may contribute to the values of the entire image
or video frame, which is necessary for several applications,
such as recoloring and colorization); and their implementa-
tion is relatively straightforward, since they are defined by a
difference equation (Eq. 1).

For digital manipulation and processing, continuous sig-
nals (often originating from real-world measurements) must
be sampled. Traditionally, uniform sampling is preferred,
and samples are arranged on a spacetime regular grid (for
example, the rows, columns, and frames of a video se-
quence). However, several applications are better defined us-
ing non-uniform sampling, such as alias-free signal pro-
cessing [SS60], global illumination [Jen96], edge-aware
image processing [GO11], filtering in asynchronous sys-
tems [FBF10], particle counting in physics [PO00], among
many others [Eng07]. The main difficulty is that standard op-
erations for filtering—such as fast Fourier transforms (FFT),
convolutions, and recursive filters—are commonly formu-
lated with uniform sampling in mind.

We introduce a mathematical formulation for applying re-
cursive digital filters to non-uniformly sampled signals. Our
approach is based on simple constructs and provably pre-
serves stability of any digital filter, be it low-pass, high-pass,
or band-pass. We also explore relevant aspects and implica-
tions to image and video processing applications, such as fil-
ter behavior to image edges (Sections 3.2.3, 3.2.4 and 5), and
common boundary condition specification (Section 3.2.5).
The flexibility of our solution allows for the fine-tuning of
the filter response for specific applications (Section 6.2).

Our method is general and works with any non-uniformly
sampled signal and any recursive digital filter defined by a
difference equation. Since our formulation works directly
with the filter coefficients, it works out-of-the-box with ex-
isting methodologies for digital filter design. In particular,
we illustrate the usefulness of our formulation by using it
to integrate higher-order recursive filtering with recent work
on edge-aware transforms (Section 6.1). Such an integration
allows us to demonstrate, for the first time ever, linear-time
edge-aware implementations of arbitrary recursive digital
filters. We show examples of a variety of such filters, includ-
ing Gaussian, Laplacian of Gaussian, and low/high/band-
pass Butterworth and Chebyshev filters (Figure 1).

Our solution produces high-quality results in real time,
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and works on color images at arbitrary filtering scales. The
resulting filters have infinite impulse responses, and their
computational costs are not affected by the sizes of the sup-
ports of the filters. We demonstrate the flexibility and effec-
tiveness of our solution in various image and video applica-
tions, including edge-aware color filtering, noise reduction,
stylization, and detail enhancement.

The contributions of our work include:

• A discrete-time O(N) mathematical formulation for ap-
plying arbitrary recursive filters to non-uniformly sam-
pled signals (Section 3);
• Two normalization schemes for filtering non-uniformly

sampled signals: one based on piecewise resampling
(Section 3.2.3), and the other based on spatially-variant
scaling (Section 3.2.4). In edge-aware applications, our
infinite impulse response (IIR) normalization schemes
provide control over the filter’s response to signal dis-
continuities (i.e., edges). This was previously only possi-
ble for finite impulse response (FIR) filters;
• A general technique to obtain linear-time low-pass,

high-pass, and band-pass edge-aware filters (Sec-
tion 6.1). Our approach allows one to perform all these
filters in real time;
• The first linear-time edge-aware demonstrations of sev-

eral low/high/band-pass filters, including Gaussian,
Laplacian of Gaussian, and Butterworth (Section 6.2);
• A demonstration of uses of non-uniform filtering in

various image and video processing applications (Sec-
tion 6.2), for which we discuss important details, such as
common boundary conditions (Section 3.2.5), and sym-
metric filtering (Section 3.2.6).

2. Background on Recursive Filtering

Recursive filters have been extensively studied in the past 50
years, and a variety of mathematical techniques are available
for their design and analysis [PM07]. In computer graph-
ics, recursive filtering has been employed in a large num-
ber of applications, including interpolation [BTU99], tempo-
ral coherence [FL95], edge-aware image processing [GO11,
GO12, Yan12], and efficient GPU filtering [NMLH11].
These filters have several advantages compared to other fil-
tering methods based on brute-force convolution, summed-
area-tables, and FFTs. For instance, they have linear-time
complexity in the number of input samples; infinite impulse
responses; and a relatively straightforward implementation.

A causal infinite impulse response (IIR) linear filter is de-
scribed by a difference equation in the spatial/time domain:

g[k] =
Q

∑
i=0

ni f [k− i]+
P

∑
i=1

di g[k− i], k = 0 . . .N−1; (1)

where f [k] is the input sequence of length N, g[k] is the out-
put sequence, and {ni,di} ∈ R are the filter coefficients. P
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is called the feedback order of the filter. A 0th-order filter is
simply a finite impulse response (FIR) one. Since the input
sequence is finite and only defined for k = 0 . . .N− 1, one
needs to define the values of f [−q] for q = 1 . . .Q and g[−p]
and for p = 1 . . .P, called the initial conditions of the sys-
tem. Eq. 1 can be evaluated in O(N) time, and it implements
a causal filter since its output only depends on previous out-
puts and current/previous inputs.

The causal system from Eq. 1 is equivalently described by
its transfer function H(z) in the z-domain [PM07]:

H(z) =
G(z)
F(z)

=
∑

Q
i=0 ni z−i

1−∑
P
i=1 di z−i

, (2)

where F(z) = Z{ f [k]} and G(z) = Z{g[k]} are the z-
transforms of the input and output sequences, respectively.
The unilateral z-transform of a sequence x[k] is given by

X(z) = Z {x[k]}=
∞
∑
k=0

x[k]z−k. (3)

The P roots of the denominator in Eq. 2 are the finite poles
of the transfer function. The output sequence g[k] can be
obtained from H(z) and F(z) by computing the inverse z-
transform (on both sides) of G(z) = H(z)F(z). This yields
g[k] = (h ∗ f )[k], where ∗ is discrete convolution. h[k] is
the impulse response of the filter described by Eq. 1, given
by the inverse z-transform of H(z). Its discrete-time Fourier
transform ĥ(ω) is obtained from its z-transform as ĥ(ω) =
H(e j ω), where j =

√
−1. Since the filter is causal, the im-

pulse response is zero for negative indices: h[k] = 0 for k < 0.

2.1. Non-Uniform Sampling

Recursive filtering of non-uniformly sampled signals has
been studied by Poulton and Oksman [PO00], and by Fes-
quet and Bidégaray [FBF10]. They model the filtering pro-
cess in the s-domain, related to the continuous spatial/time
domain by the Laplace transform. The filter then becomes
a continuous differential equation, which can be solved nu-
merically using a variable time-step to represent the non-
uniformly sampled output. Essentially, the scheme chosen
for the numerical solution defines how one transforms the s-
domain (where the filter is modeled in continuous-time) to
the z-domain (where the filter is evaluated in discrete-time).

Fesquet and Bidégaray [FBF10] review several numeri-
cal integration approaches to solve the s-domain differential
equation using variable time-steps. They conclude that the
semi-implicit bilinear method of [PO00] is possibly the best
option in terms of complexity and stability. However, this
transform is not defined for systems with poles at z = −1,
and may be ill-conditioned for systems with poles very close
to z =−1 (some high pass filters) [MAT14b].

t0 t1 t2 tk−1 tk tk+1 tk+2

f [k]

∆tk
. . .

k

f

Figure 2: Example of a non-uniformly sampled signal.

3. Recursive Filtering of Non-Uniformly Sampled
Signals

We introduce an alternative formulation for recursive filter-
ing of non-uniformly sampled signals. For this, we extend
Eq. 1 to work directly in the non-uniform discrete domain.
As a result, we can directly apply an arbitrary discrete-time
filter H(z) to any non-uniform signal. In the upcoming dis-
cussions, we focus on properties and applications relevant
to image and video processing. For instance, we discuss dif-
ferent normalization schemes (Sections 3.2.3 and 3.2.4) that
may lend to better-suited filters for specific tasks (Section 5).
We also describe the integration of high-order recursive dig-
ital filters with recent work on edge-aware transforms (Sec-
tion 6.1), enabling, for the first time, edge-aware evaluation
of a variety of filters, such as those illustrated in Figure 1.

Our approach takes as input a discrete-time filter de-
fined by its transfer function H(z), an input sequence f [k] of
length N, and a set of positive values {∆tk} which define the
distance (or time delay) between subsequent samples (Fig-
ure 2). The distance values ∆tk are commonly obtained from
real measurements at the time of sampling [FBF10], or com-
puted in other ways [GO11]. From an initial position t0, we
compute the exact position tk of the k-th input sample using
the recurrence tk = tk−1+∆tk. Our output is a sequence g[k]
of length N, containing the filtered input values.

3.1. The Naive Approach

One might be tempted to directly apply Eq. 1 to the in-
put sequence f [k], while ignoring the distance values ∆tk.
Certainly, this does not produce the desired output, since it
treats the sequence f [k] as if it were a uniformly-sampled
sequence. The underlying problem lies in the filter H(z)
(Eq. 2), which has a hidden dependency on a constant sam-
pling interval T . One can intuitively see this dependency
through its discrete-time Fourier transform, obtained from
H(z) by letting z = e jω: note that the frequency parameter
ω ∈ [−π,π] is normalized relative to the sampling interval
T . That is, ω is measured in radians per sample. This means
that the sequence being filtered should have been sampled
using the same interval T , otherwise the response of H(z)
cannot be effectively characterized in the frequency domain.

One naive solution for filtering non-uniformly sampled
sequences is to perform sample-rate conversion to bring the
sampling rate to a constant value. However, this is imprac-
tical as it introduces severe overhead to the filtering pro-
cess: depending on the values of the intervals ∆tk, sample-
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rate conversion to a constant interval T could require large
amounts of memory and time. Another interesting solution
is the non-uniform extension of the FFT [Mar01]. However,
its performance is still superlinear O(NlogN) in the number
of pixels, and its implementation somewhat complex.

Our approach, described in the following sections, ad-
dresses all of these limitations.

3.2. Our Approach

This section presents the main contribution of our work: a
mathematical formulation required to apply an arbitrary re-
cursive filter to non-uniformly sampled signals. We solve
this problem by first decomposing a P-th order filter into a
set of 1st-order ones (Section 3.2.1), then deriving the equa-
tions for the individual 1st-order filters in a non-uniform do-
main (Sections 3.2.2–3.2.6), and finally applying them sep-
arately to the input data (Eq. 6).

3.2.1. Decomposition into 1st-Order Filters

Let H(z) be a P-th order filter whose P poles b1,b2, . . . ,bP
are all distinct. Then, through partial-fraction expan-
sion [PM07], H(z) can be decomposed into a sum of P 1st-
order filters and one 0th-order FIR filter:

H(z) =
P

∑
i=1

ai

1−bi z−1 +
Q−P

∑
i=0

ci z−i, {ai,bi,ci} ∈ C. (4)

The i-th 1st-order filter Hi(z) = ai
1−bi z−1 is described in the

spatial domain by the difference equation

gi[k] = ai f [k]+bi gi[k−1], (5)

or equivalently by the convolution of the input sequence f [k]
with its (causal) impulse response hi[k] = a bk:

gi[k] = (hi ∗ f )[k].

Due to the linearity of Eq. 3, the original filter H(z) can then
be computed in parallel in O(N)-time as the summed re-
sponse of all gi, plus a convolution with the FIR filter:

g[k] =
P

∑
i=1

gi[k]+
Q−P

∑
i=0

ci f [k− i]. (6)

If H(z) contains a multiple-order pole of order m > 1
(i.e., bi = bi+1 = . . . = bi+m−1), its partial-fraction expan-
sion (Eq. 4) will also contain terms of orders 1 through m:

Hi(z)+Hi+1(z)+ · · ·+Hi+m−1(z)

=
ai,1

1−bi z−1 +
ai,2 z−1

(1−bi z−1)2 + · · ·+
ai,m z−(m−1)

(1−bi z−1)m . (7)

However, any term of order l = 1 . . .m can be decomposed
into a product (in the z-domain) of ‘l’ 1st order terms:

ai,l z−(l−1)

(1−bi z−1)l =
ai,l

1−bi z−1

l−1

∏
1

z−1

1−bi z−1 .

In the spatial domain, this is the application in sequence of
‘l’ 1st order filters, which is also performed in O(N)-time.

3.2.2. 1st-Order Filtering in a Non-Uniform Domain

Let H(z) = a/(1−b z−1) be a 1st-order filter with coeffi-
cients {a,b} ∈ C, which is described in the spatial domain
by Eq. 5. Without loss of generality, from here on we will as-
sume this filter has been designed for a constant and unitary
sampling interval T = 1. Suppose the input sequence is zero
( f [k] = 0) for all k between some positive integers k0 and k1,
where k0 < k1. Then, if we unroll the recurrence relation in
Eq. 5, the response of the system for g[k1] can be written as

g[k1] = a f [k1]+bk1−k0 g[k0].

Note that k1 − k0 is the spatial distance (or elapsed time)
between the k0-th and k1-th samples, due to the unitary
sampling interval. However, if we take into account the
non-uniform distribution of the sequence f [k], the distance
k1− k0 is incorrect, and should be replaced by tk1 − tk0 :

g[k1] = a f [k1]+btk1−tk0 g[k0].

Thus, let k0 = k−1 and k1 = k; and note that ∆tk = tk− tk−1
(see Figure 2). Eq. 5 is written in a non-uniform domain as

g[k] = a f [k]+b∆tk g[k−1]. (8)

This equation correctly propagates the value of g[k− 1] to
g[k] according to the sampling distance ∆tk. However, it fails
to preserve the normalization of the filter.

A normalized filter has unit gain at some specified fre-
quency ω∗. For example, a low-pass filter commonly has
unit gain at ω∗ = 0, which is equivalent to saying that its
discrete impulse response should sum to one: ∑h[k] = 1.
Normalizing a filter is done by scaling its impulse response
(in practice, its numerator coefficients {ni} from Eq. 2) by
an appropriate factor γ. To find γ one uses the discrete-time
Fourier transform†, which assumes a constant sampling in-
terval. Indeed, non-uniform sampling breaks this assump-
tion, meaning that there does not exist a single scaling factor
γ which makes the filter everywhere normalized.

Assuming the input filter H(z) (originally designed for
uniformly-sampled signals) is normalized, we present two
ways of correcting Eq. 8 to preserve normalization when
filtering non-uniformly sampled signals. The first approach
is based on piecewise resampling (Section 3.2.3), while the
second is based on spatially-variant scaling (Section 3.2.4).
Each approach produces a different response for the filter
(see discussion in Section 5), while maintaining its defining
characteristics. Appendix A proves the stability of our filter-
ing equations.

† Let ω∗ ∈ [−π,π] be the normalized frequency parameter. The
gain |γ| at frequency ω∗ of a filter U(z) is |γ|= |U(e j ω∗ )| = |û(ω∗)|.
Thus, H(z) =U(z)/|γ| is a filter normalized to unit-gain at ω∗.
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tk−1 tk

f [k]

f [k−1]
∆tk

k

f

Figure 3: Piecewise linear unitary resampling between the
(k−1)-th and k-th samples. In this example, ∆tk = 4.

3.2.3. Normalization-preserving piecewise resampling

Recall that, in the z-domain, a digital filter is designed and
normalized assuming a constant sampling interval T (Sec-
tion 3.1). To work with non-uniform sampling, it is imprac-
tical to perform sample-rate conversion on the full input se-
quence due to time and memory costs. In this section, we
show how one can perform piecewise resampling in a very
efficient way. In particular, we show that it is possible to ex-
press this resampling process using a closed-form expres-
sion (i.e., one does not have to actually create and filter new
samples, nor store them in memory). Thus, we are able to
preserve normalization and maintain the O(N)-time perfor-
mance of the filter, even when dealing with non-uniformly
sampled signals.

Without loss of generality, assume T = 1. Also assume,
for the time being, that the non-uniform distances between
samples are positive integers (i.e., ∆tk ∈ N). This restriction
will be removed later. To compute the output value g[k], we
will use the known previous output value g[k− 1] and cre-
ate new samples between f [k−1] and f [k] to obtain uniform
and unitary sampling. This process is illustrated in Figure 3,
where new input samples (shown as green outlined circles)
are linearly interpolated from the actual samples (green cir-
cles at times tk−1 and tk). While a linear interpolator does
not obtain ideal reconstruction of the underlying continuous
signal [PM07], it is computationally efficient and produces
good results for image and video processing [GO11]. Other
polynomial interpolators such as Catmull-Rom [CR74] can
be used at the expense of additional computation.

Since we are working with a causal filter, the newly inter-
polated samples will contribute to the value of g[k], but not
to g[k−1]. As expected, this contribution is simply the con-
volution of the interpolated samples with the filter’s impulse
response h[k]. Since the convolution result will be added to
the value of g[k] (the k-th sample), it is evaluated at position
tk of the domain. The end result is an additional summation
term Φ in Eq. 8:

g[k] = a f [k]+b∆tk g[k−1]+
∆tk−1

∑
i=1

h[∆tk− i] f̃k[i]︸ ︷︷ ︸
Φ

. (9)

f̃k[i] is the i-th sample interpolated from f [k−1] and f [k]:

f̃k[i] =
i

∆tk
( f [k]− f [k−1])+ f [k−1]. (10)

Closed-form solution One can evaluate the summation Φ

into a closed-form expression by substituting Eq. 10 and the
1st-order impulse response h[k] = abk into it:

Φ=

(
b∆tk −1
r0 ∆tk

− r1 b

)
f [k]−

(
b∆tk −1
r0 ∆tk

− r1 b∆tk

)
f [k−1],

(11)
where r0 = (b−1)2/(ab) and r1 = a/(b−1). This formula
can be evaluated in constant time regardless of the number
of new interpolated samples. Furthermore, despite our initial
assumption, Eq. 11 works correctly for non-integer values of
the non-uniform distances between samples (i.e., ∆tk ∈ R).

3.2.4. Renormalization by spatially-variant scaling

We can avoid the need for reconstructing the underlying con-
tinuous signal through spatially-variant scaling. By unrolling
the recurrence in Eq. 8, one obtains a representation of the
filtering process as a brute-force convolution:

g[k] =
k

∑
n=−∞

abtk−tn f [n]. (12)

Eq. 12 can be interpreted as a (causal) linear spatially-
variant system acting on a uniform sequence f [k] and pro-
ducing another uniform sequence g[k]. The frequency char-
acteristics of this system are spatially-variant since its im-
pulse response is spatially variant. Therefore, such a system
can only be normalized to unit gain using a spatially-variant
scaling factor γk. In this way, the sequence resulting from
Eq. 8 is used to build a normalized output sequence g′[k] as

g′[k] = g[k]
/
|γk| , k = 0 . . .N−1. (13)

The computation of the values {γk} depends on how one in-
terprets the infinite sum in Eq. 12, as it references input sam-
ples f [k] for negative indices k. Two interpretations exist:

Interpretation #1: Input samples f [k] do not exist for
k < 0 and, thus, it makes no sense to reference their values.
This is common when working with time-varying signals,
such as videos, and filtering along time. Thus, to reference
only valid data, the convolution in Eq. 12 should start at zero:

g[k] =
k

∑
n=0

abtk−tn f [n]. (14)

The gain of this system for frequency ω∗ is measured by
its response to a complex sinusoid oscillating at ω∗. Thus,
when processing the k-th sample, the gain |γk| at frequency
ω∗ for the filter in Eq. 14 is

|γk|=

∣∣∣∣∣ k

∑
n=0

abtk−tn e− j ω∗ n

∣∣∣∣∣ . (15)

Algorithm detail Computing γk for all k directly from the
summation in Eq. 15 results in quadratic O(N2)-time com-
plexity. Linear O(N)-time performance can be obtained by
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expressing the value of γk in terms of the previous value
γk−1. This results in the recurrence relation

|γk|=
∣∣∣ae− j ω∗ k +b∆tk γk−1

∣∣∣ , k = 1 . . .N−1, (16)

with initial value γ0 = a.

Interpretation #2: Input samples f [k] exist for k < 0 and
their values are defined by application-specific initial (or
boundary) conditions. This is common when working with
signals defined in space, such as images and 3D volumes.
Section 3.2.5 discusses some choices of boundary condi-
tions. For this case, we have no option but to work with an
infinite sum to compute the gain:

|γk|=

∣∣∣∣∣ k

∑
n=−∞

abtk−tn e− j ω∗ n

∣∣∣∣∣ . (17)

Luckily, the recurrence relation in Eq. 16 is still valid for this
infinite sum, but with a different initial value γ0. To compute
this new γ0, one can arbitrarily choose the sampling posi-
tions tk for k < 0 (as part of the definition of the bound-
ary conditions). The obvious choice is a unitary and uniform
sampling, which implies that tk = t0+k for k < 0. Given this
choice and Eq. 17, one obtains

γ0 =
0

∑
n=−∞

ab−n e− j ω∗ n =
a

1−be j ω∗
, |b|< 1. (18)

The convergence condition |b| < 1 is always true for any
stable 1st-order filter since b is a pole of its transfer func-
tion [PM07].

Note on normalization When implementing a P-th or-
der filter, its 1st-order component filters (obtained through
partial-fraction expansion in Section 3.2.1) should be nor-
malized using the gain of the original P-th order filter (i.e.,
they should not be normalized separately). Thus, let H(z)
be a P-th order filter from Eq. 4. Its gain (and normaliza-
tion factor) |γk| at frequency ω∗, evaluated at k, is given by
combining the gains |γi,k| (i = 1 . . .P) of all its composing
1st-order filters:

|γk|=

∣∣∣∣∣ P

∑
i=1

γi,k +
Q−P

∑
n=0

cn e− j ω∗ n

∣∣∣∣∣ .
The rightmost summation represents the gain contribution of
the 0th-order term in Eq. 4. Each γi,k is computed replacing
the i-th filter coefficients {ai,bi} into Eq. 16, and choosing
an initial value γi,0 according to Interpretation #1 or #2.

If H(z) contains a multiple-order pole bi of order m, the
gain contribution of the terms of orders 1 through m (Eq. 7)
is given by the sum∣∣∣∣∣ m

∑
l=1

ai,l e− j ω∗ (l−1) (
γ
∗
i,k
)l

∣∣∣∣∣ .
|γ∗i,k| is the gain for the filter 1

1−bi z−1 , computed by the sub-
stitutions a→ 1 and b→ bi into Eq. 16.

k

h+ +
k

h− =
k

h

k

h+ +
k

h− =
k

Xh

Figure 4: (Top) Central sample counted by both causal h+

and anti-causal h− filters, resulting in an incorrect impulse
response h = h+ + h−. (Bottom) Central sample counted
only by the causal h+ filter, resulting in a correct impulse
response h = h++h−.

3.2.5. Initial Conditions

To compute the value g[0] of the first output sample for the
filters in Eq. 9 and Eq. 13, one needs to define the values
of f [−1] and g[−1]: the initial (or boundary) conditions of
the system. A relaxed initial condition is obtained by setting
both values to zero: f [−1] = g[−1] = 0. However, when fil-
tering images and videos, one frequently replicates the ini-
tial input sample (i.e., f [−1] = f [0]). The corresponding ini-
tial value g[−1] is found by assuming a constant output se-
quence for k < 0, where all its samples have a constant value
β. This constant is found by solving the system’s difference
equation: defining a uniform and unitary sampling for k < 0,
the 1st-order system’s equation g[−1] = a f [−1] + bg[−2]
becomes β = a f [0]+bβ. Solving for β gives

g[−1] = β =
a

1−b
f [0].

3.2.6. Non-Causal and Symmetric Filters

For image and video processing, one is usually interested in
filters with non-causal response. That is, filters for which the
output value of a pixel p depends on the values of pixels to
left and pixels to right of p (see Section 6.1.2 on how we de-
fine 2D filters). A non-causal symmetric response is usually
achieved by applying the filter in two passes: a causal (left-
to-right) pass and an anti-causal (right-to-left) pass. This
combination can be done either in series [VVYV98, GO11]
or in parallel [Der93].

If done in parallel, one must be careful not to count the
central sample twice when designing the filter [Der93]; oth-
erwise, the resulting impulse response may be incorrect (Fig-
ure 4, top). A simple way to avoid this problem is to in-
clude the central sample only on the causal pass (Figure 4,
bottom). For a 1st order filter with causal transfer func-
tion given by H+(z) = a

1−b z−1 , the respective anti-causal
transfer function which does not count the central sample is
H−(z) = a b z

1−b z , and its corresponding difference equation is

g−[k] = a b f [k+1]+b g−[k+1]. (19)
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For non-uniform domains, Eq. 19 should be rewritten as

g−[k] = a b∆tk f [k+1]+b∆tk g−[k+1], (20)

and it must be normalized as described in Section 3.2.3
and Section 3.2.4.

4. Designing Digital Filters

Our method can be used to filter any non-uniformly sampled
signal using any recursive digital filter defined by a differ-
ence equation. Since our formulation uses the filter coeffi-
cients, it directly works with existing methodologies for IIR
digital filter design. For example, both MATLAB [MAT14a]
and the open-source SciPy library [JOP∗ ] provide routines
that compute the coefficients of well-known filters such as
Butterworth, Chebyshev, and Cauer. They also implement
the partial-fraction expansion described in Section 3.2.1
through the routine residuez().

It is also easy to create new filters by combining and mod-
ifying existing ones. For example, the high-pass enhancer fil-
ter from Figure 1(d) was created by combining a scaled high-
pass Butterworth filter with an all-pass filter: 2Hhigh(z)+1;
the filter from Figure 1(c) was similarly created from a band-
pass Laplacian of Gaussian (LoG): 1−2.5HLoG(z).

Recursive digital filters can also be designed to approx-
imate in linear-time other IIR filters which are commonly
superlinear in time. For example, Deriche [Der93] and Van
Vliet et al. [VVYV98] show how to approximate a Gaus-
sian filter and its derivatives, and Young et al. [YVVvG02]
implement recursive Gabor filtering.

To illustrate the use of our approach to obtain non-uniform
filtering equations, Appendix B shows the derivation of a re-
cursive non-uniform O(N)-time Gaussian filter with normal-
ization preserved by piecewise resampling.

5. Evaluation and Discussion

The supplementary materials (available at http://inf.
ufrgs.br/~eslgastal/NonUniformFiltering)
include an implementation of our method, together with
various examples of using it to process synthetic data, as
well as several images and video.

Accuracy Figure 5 illustrates the accuracy of our ap-
proach when computing the impulse response of several IIR
filters using non-uniform sampling. The filters are defined
by their coefficients in the z-domain, and are included in the
supplementary materials. Each plot shows the corresponding
analytical ground-truth impulse response (solid blue line),
together with the output samples (orange dots) obtained by
filtering a non-uniformly sampled impulse. The sampling
positions (indicated by vertical dotted lines) were generated
randomly. The impulse was represented by a 1 at the origin,
followed by 0’s at the sampling positions.

(a) Gaussian (4-th order), PSNR 316.0 dB

(b) Gaussian 1st derivative (4-th order), PSNR 250.9 dB

(c) Laplacian of Gaussian (4-th order), PSNR 288.4 dB

(d) Decaying exponential (1-st order), PSNR 302.9 dB

(e) Chebyshev Type I low-pass (8-th order), PSNR 308.9 dB

(f) Butterworth band-pass (8-th order), PSNR 304.4 dB

(g) Cauer high-pass (8-th order), PSNR 320.0 dB

Figure 5: Accuracy of our approach when filtering an im-
pulse with several IIR filters using non-uniform sampling.
The solid blue lines are the analytical ground-truth impulse
responses. The small orange dots are the output samples.

−4
0
4

(a) Noisy non-uniformly sampled input signal

−1
0
1

(b) De-noised non-uniform signal generated by our method

Figure 6: A noisy non-uniformly sampled sinusoid in (a) is
filtered by the band-pass Butterworth filter from Figure 5(f)
using our approach. The filtered samples are shown in (b),
superimposed on the original noiseless signal (in blue).

Figure 5 shows that our results are numerically accu-
rate and visually indistinguishable from ground-truth, with
PSNR consistently above 250 dB (note that a PSNR above
40 dB is already considered indistinguishable visual differ-
ence in image processing applications). Furthermore, since
the impulse response uniquely characterizes the filter, this
experiment guarantees the accuracy of our approach in fil-
tering general non-impulse signals. This conclusion is illus-
trated in Figure 6, where we use the band-pass filter from
Figure 5(f) to denoise a non-uniformly sampled signal.
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Performance We implemented our approach in C++. Fil-
tering one million samples using a 1st-order filter and 128-
bit complex floating point precision takes 0.007 seconds on
a single core of an i7 3.6 GHz CPU. This performance scales
linearly with the number of samples. It also scales linearly
with the order of the filter, which for common applications is
rarely larger than 10. All the effects shown in Figure 1 were
generated using 4th-order filters.

Our approach is highly parallelizable. A high-order fil-
ter is decomposed as a sum of independent 1st-order filters
which can be computed in parallel (Section 3.2.1). Each 1st-
order filter can also be parallelized internally using the ap-
proach described in [NMLH11].

Implementation Details The latest CPUs have extremely
fast instructions for evaluating the exponentiations in Eqs. 9
and 13. Our C++ code calls std::pow(b,∆tk) directly.
For older CPUs, one can use precomputed tables to further
improve filtering times. Other constants dependent on the
filter coefficients, such as r0 and r1, should be precomputed
outside the main filtering loop.

Image and video processing applications use filters that
take real inputs and produce real outputs (i.e., f ,g∈R). One
property of real filters is that any complex coefficient in its
partial-fraction expansion must have a complex-conjugate
pair [PM07]. Thus, in practice, we only have to compute the
filter response for one coefficient in each complex-conjugate
pair, multiply the result by two, and drop the imaginary part.

Other Approaches The continuous-space method de-
scribed by Poulton and Oksman [PO00] may be used
for filtering non-uniformly sampled signals. However, their
method requires mapping between discrete and continu-
ous space using the bilinear transform, which can be-
come ill-conditioned for very large or small sampling inter-
vals [Bru11], especially in high-pass filters [BPS14]. This
has a direct impact on the accuracy and quality of the
filter. Furthermore, their approach does not allow control
over normalization schemes (Sections 3.2.3 and 3.2.4), and
their work does not explore details which become important
when filtering images and videos, such as boundary condi-
tions (Section 3.2.5) and the construction of symmetric fil-
ters (Section 3.2.6).

Gastal and Oliveira [GO11] describe a simple 1st-order
decaying-exponential low-pass filter which works in a non-
uniform domain. It can be shown that such a filter is the
simplest special case of our more general method: their
filter can be obtained from our equations by (i) using a
zero-order-hold ( f zoh

k [i] = f [k]) instead of the linear inter-
polator in Eq. 9; and by (ii) noticing that the coefficients
of a normalized 1st-order low-pass real filter must satisfy
a = 1− b. This results in the filtering equation g[k] = (1−
b∆tk ) f [k]+ b∆tk g[k− 1]. Additionally, their formulation ap-
plies causal/anticausal filters in series, and does not lend to a
truly symmetric filter in non-uniform domains. Our formu-
lation using filters in parallel addresses this limitation.

Spatially-variant scaling Piecewise resampling

Figure 7: An impulse (upward-pointing arrow) travels from
the left to the right of the domain. This domain contains a
simulated discontinuity close to its center, shown as a ver-
tical gray line (in a real signal, like an image, this could
be an edge from an object—see Section 6.1). The impulse
is filtered using our approach to deal with the discontinu-
ity, and a Gaussian kernel. We normalize the filter either by
spatially-variant scaling (impulse response shown in blue),
or by piecewise resampling (impulse response shown in or-
ange). Note how each normalization scheme results in a dif-
ferent response to the discontinuity and boundary in the do-
main. Thus, in edge-aware applications we are able to con-
trol the filter’s response to the edges in the signal [GO11].

Finally, our IIR normalization schemes are related to the
FIR convolution operators defined by [GO11]: our spatially-
variant scaling provides the same response as normalized
convolution [KW93], and our piecewise resampling gener-
ates the same response as interpolated convolution. Thus,
in edge-aware applications, our IIR normalization schemes
provide control over the filter’s response to the edges (see
the plots in Figure 7). This was previously only possible for
the FIR filters of [GO11].

6. Applications

This Section demonstrates the usefulness of our formulation
to various tasks in image and video processing. In particular,
we show how to integrate high-order recursive filtering with
recent work on edge-aware transforms. Thus, we demon-
strate the first linear-time edge-aware implementations of
several recursive digital filters, including Gaussian, Butter-
worth, and other general low/high/band-pass filters.

6.1. General Edge-Aware Filtering

An edge-aware filter transforms the content of an image
while taking into account its structure. For example, an edge-
aware smoothing filter can remove low-contrast variations
in the image while preserving the high-contrast edges; and
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k
(a) f [k]

w
(b) f [t−1(w)]

w
(c) g[t−1(w)]

k
(d) g[k]

Figure 8: Edge-preserving low-pass filtering using the do-
main transform. (a) Input sequence f [k]. (b) Input sequence
after the warping defined by the domain transform w = t(k).
(c) Input sequence after warping and filtering with a low-
pass Gaussian filter. (d) Output sequence g[k] obtained after
un-warping (c).

an edge-aware enhancement filter can increase local contrast
without introducing visual artifacts such as halos around ob-
jects. Due to these properties, edge-aware filters are impor-
tant components of several image and video processing ap-
plications [DD02, LLW04, LFUS06, Fat09, FFL10].

Recently, Gastal and Oliveira [GO11] showed how any
filtering kernel can be made edge-aware by adaptively warp-
ing the input sequence using a domain transform. Concep-
tually, they warp the input image (signal) along orthogonal
1-D curves while preserving the distances among pixels, as
measured in higher-dimensional spaces. In such a warped
domain, pixels (samples) are non-uniformly spaced. Apply-
ing a linear filter in this warped domain and then reversing
the warp results in an edge-aware filter of the original sam-
ples. This process is illustrated in Figure 8 for a low-pass
filter applied to a 1-D signal. In practice, there is no need to
explicitly warp and un-warp the signal, and the entire opera-
tion is performed on-the-fly in a single step.

The technique of Gastal and Oliveira [GO11] is fast and
lends to good results. However, its solution (in linear time)
has only been demonstrated on two simple filters: an iterated
box filter and a recursive 1st-order decaying-exponential fil-
ter (both low-pass filters). Using our formulation of non-
uniform filtering, we are able to generalize their approach
to work on recursive filters of any order, and in linear time,
which allows practically unlimited control over the shape of
the filtering kernel. In other words, with our generalization
we can transform any recursive linear filter h (described by
Eq. 1) into a recursive edge-aware filter hEA (described by
either Eq. 9 or Eq. 13). The resulting filter is non-linear,
and maintains the characteristics of the original filter. Thus,
for instance, if h is a low-pass filter, hEA will be a low-pass
edge-aware filter. Furthermore, since hEA is also described
by a difference equation, it will filter an input sequence of
length N in O(N) time.

Next we review the domain transform and show how it
integrates with our method. Section 6.2 shows various ex-
amples of applications that use this integration.

6.1.1. Review of the Domain Transform

Assuming a unitary sampling interval along the rows (or
columns) of an image, the imagespace distance between two

samples f [k] and f [k + δ] is δ, for δ ∈ N. Using a domain
transform t(k), the warped-space distance between the same
samples is t(k+δ)− t(k). By definition (see Eq. 21), the do-
main transform is a monotonically increasing function (i.e.,
t(k+δ)− t(k)≥ δ).

Gastal and Oliveira [GO11] obtain their domain transform
using the `1 norm to compute distances over the image man-
ifold. We instead use the `2 norm. This results in a (discrete)
domain transform given by

t(k) =
k

∑
i=1

√√√√1+
(

σs

σr

)2 d

∑
c=1

( fc[i]− fc[i−1])2. (21)

Here, fc[i] is the i-th element in the sequence of N sam-
ples obtained from the c-th channel of the signal, from a
total of ‘d’ channels (for example, an RGB image has d = 3
channels: red, green, and blue). σs and σr are parameters
of the edge-aware filter. σs controls the imagespace size of
the filter kernel, and σr controls its range size (i.e., how
strongly edges affect the resulting filter). We refer the reader
to [GO11] for further details.

6.1.2. Using the Domain Transform with Our Method

Eq. 21 defines new non-uniform positions for each sample in
the spatial domain. Consequently, the warped-space distance
between adjacent samples f [k−1] and f [k] is given by

∆tk =

√√√√1+
(

σs

σr

)2 d

∑
c=1

( fc[k]− fc[k−1])2 (22)

The values {∆tk} can be precomputed for all k = 0 . . .N−
1, and then substituted into the filtering equations (Eqs. 9
and/or 13) for evaluating the filter. In this way, we obtain an
edge-aware implementation of arbitrary recursive filters. For
example, using the non-uniform Gaussian filter derived in
Appendix B, we obtain a O(N)-time edge-aware Gaussian.

Filtering 2D Signals As described by [GO11], we filter
2D images by performing a horizontal pass along each im-
age row, and a vertical pass along each image column. How
the horizontal and vertical passes are combined depend on
the desired frequency response of the filter. Low-pass fil-
ters are better applied in sequence: assuming the horizon-
tal pass is performed first, the vertical pass is applied to the
result produced by the horizontal one. High and band-pass
filters are usually better applied in parallel: the horizontal
and vertical passes are performed independently, and their
result added at the end. This suggestion is simply a design
choice: each option (sequence/parallel) will result in a filter
with different 2D frequency response. In our specific case,
we apply low-pass filters in sequence since a greater amount
of high-frequencies are “removed” from the signal, and we
apply high-pass filters in parallel since a greater amount of
high-frequencies are preserved in the signal (see Figure 9).
This is the strategy we used for filtering the images shown
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(a) Low-pass filter (b) 2D DFT, sequence (c) 2D DFT, parallel

(d) High-pass filter (e) 2D DFT, sequence (f) 2D DFT, parallel

Figure 9: The 1D low-pass filter with impulse response
shown in (a) may be applied to the rows and columns of
an image to obtain a 2D filter. The corresponding horizon-
tal and vertical passes may be combined either in sequence
or in parallel, each option resulting in a filter with different
2D frequency response. This is illustrated by the 2D discrete
Fourier transforms (DFT) shown in (b) and (c), where white
represents a gain of one and black a gain of zero, and the
zero-frequency has been shifted to the center of the images.
It is clear that applying the filter from (a) in sequence re-
moves a greater amount of high-frequencies from the signal.
Thus, this low-pass filter is better applied in sequence, as in
(b). The opposite is true for high-pass filters. The high-pass
filter from (d) is better applied in parallel, as in (f), since a
greater amount of high-frequencies are preserved.

in the paper. Filtering higher-dimensional signals such as 3D
volumes is performed analogously.

6.2. Image and Video Processing Examples

Detail Manipulation Our formulation for non-uniform
recursive digital filters enables for the first time the direct
application of general filters in edge-aware applications. For
example, one can perform general frequency-domain manip-
ulations without introducing artifacts such as halos around
objects, as shown in Figure 10. This is possible due to the
non-uniform sampling of the image pixels defined by Eq. 22.

Figure 1 shows several examples of high-order IIR filters
used to manipulate the details of the photograph shown in
(a). In (b), a low-pass Gaussian smoothes small variations
while preserving large-scale features. For the image shown
in (c), we used a modified band-stop Laplacian of Gaus-
sian to create a stylized look for the image. For the result
shown in (d), we used a high-pass Butterworth to enhance
fine details in the tiger’s fur and whiskers. The image in
(e) was obtained with a band-pass Butterworth to improve
local contrast by enhancing medium-scale details. For (e),

(a) Photograph (b) Non-uniform (c) Uniform

Figure 10: Detail enhancement using a high-pass filter. Non-
uniform sampling (b) avoids the common halo artifacts
(black arrows) in traditional uniform sampling (c).

(a) Photograph with scribbles (b) Edited output

Figure 11: Turning bronze into gold using our approach. See
the text for details.

an edge-aware low-pass post-filter was applied to obtain the
final result, as recommended in [GO11]. This is necessary
because 2D filtering using the domain transform sometimes
introduces axis-aligned artifacts in the filtered image. Our
supplementary materials show these filters applied to many
other images and to a video.

While edge-aware detail manipulation has been per-
formed by previous approaches [FAR07, FFLS08, PHK11],
all of them work by computing differences between the out-
puts of a fixed type of low-pass filter. By providing the
ability to experiment with the design and composition of
new digital filters, our method has the potential do enable
a greater variety of effects.

Localized Editing Filtering in non-uniform edge-aware
domains can also be used for localized manipulation of pixel
colors. In Figure 11(a), color scribbles define two regions of
interest in the underlying photograph. For each region, we
generate an influence map using our low-pass non-uniform
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(a) Photograph (b) Lightness of (a)

(c) 3% of pixels from (a) (d) Reconstructed from (b), (c)

Figure 12: Example of data-aware interpolation using non-
uniform filtering. A full-color image is reconstructed from
the lightness channel and only 3% of the pixels from
the original image, shown in (a). The pixels in (c) were
importance-sampled using the gradient magnitude of the
lightness channel. PSNR of (d) vs (a) is 31.17 dB.

Gaussian filter (see [LFUS06] for details). The influence
map for the region of interest is then normalized by the
sum of influence maps for all regions, which defines a soft-
segmentation mask. This mask is used to restrict recoloring
to certain parts of the image.

Data-aware Interpolation Propagating sparse data
across the image space also benefits from an edge-aware
operator [LLW04]. For example, in Figure 12 our low-pass
non-uniform Gaussian filter is used to propagate the color
of a small set of pixels, shown in (c), to the whole image.
This generates the full-color image shown in (d). The non-
uniform domain is defined by the domain transform applied
to the lightness image in (b).

Denoising By grouping pixels based on high-dimensional
neighborhoods, we can define a fast and simple denois-
ing algorithm, as illustrated in Figure 13. We cluster pix-
els from the noisy photo in (a) based on their proximity
on the high dimensional non-local means space [BCM05].
For this example, we generate 30 disjoint clusters using k-
means, which are color-coded in (c) for visualization. The
pixels belonging to the same cluster define a non-uniformly
sampled signal in the image space. We apply a non-uniform
Gaussian filter only to the pixels belonging to the same clus-
ters, averaging-out the zero-mean noise. This is followed by
a second non-uniform edge-aware Butterworth low-pass fil-
ter on the hole image (adhering to the edges of (a)), with the
goal of removing quantization borders which originate from

the discrete clusters. The resulting denoised photograph is
shown in (b).

Using our formulation, for an image with N pixels, fil-
tering together only pixels belonging to the same clusters is
done in O(N) time for all clusters. That is, the time com-
plexity is independent of the number of clusters. Without
our formulation, for K clusters, one would have to sepa-
rate the image into K uniformly-sampled N-pixel images for
filtering, which would result in O(N K) complexity. Note
also that acceleration techniques such as the Adaptive Man-
ifolds [GO12] can perform non-local means filtering ex-
tremely fast. However, its time complexity is O(N/σs),
which may lead to slow filtering performance for filters with
small values of σs (i.e., small imagespace kernel sizes).

Stylization The same idea behind the denoising algorithm
above can be used for stylization. In Figure 14(a), we clus-
ter pixels based only on their RGB-proximity. Filtering only
pixels (of the input image) belonging to the same clusters
with a non-uniform Gaussian, and then superimposing edges
computed using the Canny algorithm applied to the filtered
image, one obtains a soft cartoon-like look (b).

7. Conclusion

We presented a discrete-time mathematical formulation for
applying recursive digital filters to non-uniformly sampled
signals. Our method is general and works with any non-
uniformly sampled signal and any recursive digital filter de-
fined by a difference equation. We have used our formula-
tion to obtain general low/band/high-pass edge-aware filters.
We have demonstrated the effectiveness of such filters ap-
plied to non-uniformly sampled signals in various image and
video tasks, including edge-preserving color filtering, noise
reduction, stylization, and detail enhancement. By providing
a simple and natural way to experiment with the design and
composition of new digital filters, our method has the poten-
tial do enable a great variety of new image and video effects.
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Appendix A: Proof of Stability

A necessary and sufficient condition for a digital filter to be
stable is that all its poles lie inside the unit circle |z| < 1
in the z domain [PM07]. The analytical stability of Eqs. 9
and 13 is proven below.

Proposition 1 For all real ∆tk > 0 and complex a,b 6= 0; if
a filter H(z) = a

1−b z−1 is stable (i.e., |b|< 1), the filter H′(z)
derived from H(z) in the way defined by Eq. 9 is also stable.

Proof. Replace the summation in Eq. 9 by the closed-form
formula from Eq. 11. The z-domain transfer function of the
resulting difference equation has the form

H′(z) =
(a+R0)−R1 z−1

1−b∆tk z−1 .

The single pole of this equation is b∆tk . For all ∆tk > 0, we
have that |b∆tk | < 1 since |b| < 1. Thus, b∆tk lies inside the
unit circle, and the filter defined by Eq. 9 is stable. �

In the same way one can easily show the analytical sta-
bility of Eq. 8 and consequently Eq. 13, since the value of
|γk| is non-zero for all k. Numerically, singularities in the
sampling rate (∆tk → 0) may lead to instabilities, since the
pole b∆tk gets too close to the unit circle. However, for the
applications shown in the paper, we did not experience any
numerical issues. Nonetheless, we recommend using 64-bit
floating point precision for computations.

Appendix B: Derivation of an O(N)-time, non-uniform
Gaussian filter with normalization preserved by
piecewise resampling.

B.1. Uniform Recursive Gaussian Filtering

Deriche [Der93] gives the following approximation to the
positive region (x≥ 0) of a unit-height Gaussian of standard
deviation σ:

u+(x) = Re
{

α0 exp
(
−λ0

σ
x
)
+α1 exp

(
−λ1

σ
x
)}

, (23)

where Re{·} denotes the real part of a complex number, and

α0 = 1.6800+3.7350 j, λ0 = 1.783+0.6318 j,

α1 =−0.6803+0.2598 j, λ1 = 1.723+1.9970 j.

The symmetric kernel is built by combining the positive
half u+ with the negative one u−(x) = u+(−x), yielding
an undistinguishable approximation to a Gaussian (mean
squared error under 2.5×10−8):

e
−x2

2σ2 ≈ u(x) =
{

u+(x) x≥ 0,
u−(x) x < 0.

In his work, Deriche implements a filter with kernel u(x)
by expanding the complex exponentials in Eq. 23 into their
composing sines and cosines, and extracting the real part.
This yields a causal 4th-order recursive system for u+ and
an anti-causal one for u−.

Note that this recursive Gaussian filter, as described by
Deriche, only works for uniformly sampled signals. Next,
we use our mathematical formulation to generalize the filter
to work in non-uniform domains.

B.2. Non-Uniform Recursive Gaussian Filtering

Different from Deriche, we work directly with the complex
exponentials in Eq. 23, and extract the real part after fil-
tering. The causal and anti-causal (complex) filter transfer
functions are, respectively,

U+(z) =
α0

1− e−λ0/σ z−1
+

α1

1− e−λ1/σ z−1
, and

U−(z) =
α0 e−λ0/σ z
1− e−λ0/σ z

+
α1 e−λ1/σ z
1− e−λ1/σ z

;

which are already decomposed into 1st-order filters. Note
that U− is designed to ignore the central sample, as de-
scribed in Section 3.2.6.

Since the Gaussian is a low-pass filter, it should be nor-
malized to unit gain at zero-frequency (ω∗ = 0), which is
equivalent to saying its kernel should have unit-area. How-
ever, the kernel defined by Eq. 23, and implemented by
U(z) = U+(z) +U−(z), is not unit-area. A unit-area filter
H(z) is obtained as H(z) =U(z)/|γ| where |γ| is the gain of
filter U(z) at zero frequency, given by:

|γ|= |U(e j ω∗)|
∣∣∣
ω∗=0

= α0
1+ e−λ0/σ

1− e−λ0/σ
+α1

1+ e−λ1/σ

1− e−λ1/σ
.

Using our methodology described in Section 3.2, the
difference equation which implements our recursive non-
uniform O(N)-time Gaussian filter with normalization pre-
served by piecewise resampling is:

g[k] =
1

∑
i=0

Re
{

g+i [k]+g−i [k]
}
,

where

ai = αi/|γ|,

bi = e−λi/σ,

g+i [k] = ai f [k]+b∆tk
i g+i [k−1]+Φk−1,k (∆tk) ,

g−i [k] = ai b∆tk+1
i f [k+1]+b∆tk+1

i g−i [k+1]+Φk+1,k (∆tk+1) ,

Φ j,k(δ) =

(
bδ

i −1
r0 δ

− r1 bi

)
f [k]−

(
bδ

i −1
r0 δ

− r1 bδ
i

)
f [ j].

Relaxed boundary condition is obtained by setting out-of-
bound values to zero: f [−1] = f [N] = g+i [−1] = g−i [N] = 0.
Alternatively, replicated-boundary condition is given by:

f [−1] = f [0], g+i [−1] =
ai

1−bi
f [0],

f [N] = f [N−1], g−i [N] =
ai bi

1−bi
f [N−1].
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