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Figure 1: A variety of effects illustrating the versatility of our domain transform and edge-preserving filters applied to the photograph in (a).

Abstract

We present a new approach for performing high-quality edge-
preserving filtering of images and videos in real time. Our solution
is based on a transform that defines an isometry between curves on
the 2D image manifold in 5D and the real line. This transform pre-
serves the geodesic distance between points on these curves, adap-
tively warping the input signal so that 1D edge-preserving filtering
can be efficiently performed in linear time. We demonstrate three
realizations of 1D edge-preserving filters, show how to produce
high-quality 2D edge-preserving filters by iterating 1D-filtering op-
erations, and empirically analyze the convergence of this process.
Our approach has several desirable features: the use of 1D opera-
tions leads to considerable speedups over existing techniques and
potential memory savings; its computational cost is not affected by
the choice of the filter parameters; and it is the first edge-preserving
filter to work on color images at arbitrary scales in real time, with-
out resorting to subsampling or quantization. We demonstrate the
versatility of our domain transform and edge-preserving filters on
several real-time image and video processing tasks including edge-
preserving filtering, depth-of-field effects, stylization, recoloring,
colorization, detail enhancement, and tone mapping.
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1 Introduction

Filtering is arguably the single most important operation in image
and video processing. In particular, edge-preserving smoothing fil-
ters are a fundamental building block for several applications [Fattal
2009; Farbman et al. 2010], having received considerable attention
from the research community over the last two decades. The most
popular filters in this class are anisotropic diffusion [Perona and
Malik 1990] and the bilateral filter [Tomasi and Manduchi 1998].
While anisotropic diffusion requires an iterative solver, bilateral fil-
tering uses a space-varying weighting function computed at a space
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of higher dimensionality than the signal being filtered. As a result,
such filters have high computational costs. Recently, several tech-
niques have been proposed that either try to accelerate anisotropic
diffusion or bilateral filtering, or introduce alternative ways of per-
forming edge-aware smoothing and other related operations. How-
ever, these solutions natively only handle grayscale [Chen et al.
2007; Criminisi et al. 2010; Yang et al. 2009], are still not suffi-
ciently fast for real-time performance [Adams et al. 2010; Farbman
et al. 2008; Grewenig et al. 2010; Subr et al. 2009; Weickert et al.
1998], or restrict filtering to certain scales [Fattal 2009].

We present a new approach for efficiently performing edge-
preserving filtering of images and videos that addresses the main
limitations of previous techniques. Our approach is based on a
novel domain transform and its efficiency derives from a key ob-
servation: an RGB image is a 2D manifold in a 5D space, and an
edge-preserving filter can be defined as a 5D spatially-invariant ker-
nel, whose response decreases as the distances among pixels in-
crease in 5D; if these distances are preserved in a space of lower
dimensionality, many spatially-invariant filters in this new space
will also be edge-preserving. The new transform defines an isome-
try between curves on the 2D image manifold and the real line. It
preserves the geodesic distances between points on the curve, adap-
tively warping the input signal so that 1D edge-preserving filtering
can be efficiently performed in linear time. We demonstrate three
realizations for our 1D edge-preserving filters, based on normalized
convolution, interpolated convolution, and recursion. These filters
have very distinct impulse responses, making each one more ap-
propriate for specific applications. Finally, although our 1D filters
cannot be exactly generalized to higher dimensions, we show how
to use them to efficiently produce high-quality 2D edge-preserving
filters.

Our approach has several desirable features. First, the use of
1D operations leads to considerable speedups over existing tech-
niques and potential memory savings. For instance, it can filter
one megapixel color images in 0.007 seconds on a GPU. Second,
its computational cost is not affected by the choice of the filter pa-
rameters. Third, it is the first edge-preserving technique capable of
working on color images at arbitrary scales in real time, without
resorting to subsampling or quantization.

We demonstrate the versatility of our domain transform and edge-
preserving filters on several real-time image and video processing
tasks including edge-preserving smoothing, depth-of-field effects,
stylization, recoloring, colorization, detail enhancement, and tone
mapping (Section 8). Examples of some of these effects can be
seen in Figure 1, applied to the photograph shown on the far left.

The contributions of our work include:

• A novel approach for efficiently performing high-quality edge-
aware filtering of images and videos based on a dimensionality-
reduction strategy (Sections 3 and 4). Our approach leads to
filters with several desirable features and significant speed-ups
over existing techniques;

• A technique to perform anisotropic edge-preserving filtering on
curves of the 2D image manifold using 1D linear filters. It con-
sists of anisotropically scaling the curve, which is then mapped
to the real line using an isometry, followed by the application of
a 1D linear filter (Section 4);

• A technique to efficiently implement 2D edge-preserving
smoothing filters as a sequence of 1D filtering operations (Sec-
tion 5). The resulting 2D filters correctly handle color images
and behave as expected even in extreme situations (Section 4.2);

• The first edge-preserving smoothing filter that simultaneously
exhibits the following properties: (i) it supports a continuum of
scales; (ii) its processing time is linear in the number of pixels,

and is independent of the filter parameters, allowing for real-
time computations; (iii) correctly handles color images; and
(iv) offers control over the kernel’s shape. For this, we show
examples of approximate Gaussian and exponential responses
(Section 6);

• A demonstration that our approach can be used to create a vari-
ety of effects for images and videos in real time (Section 8).

2 Related Work

There has been a significant amount of work on data-dependent fil-
tering. Existing methods are able to produce good results in many
practical scenarios, and edge-aware filters are available in several
image-processing applications [Kimball et al. 2011; Adobe Sys-
tems Inc. 2010]. This section discusses the approaches most related
to ours, and points out the aspects that our technique contributes to
advance.

Bilateral Filter A bilateral filter [Tomasi and Manduchi 1998]
works by weight averaging the colors of neighbor pixel based on
their distances in space and range. For (2D) RGB images, it can
be interpreted as operating in a 5D space [Barash 2002]. Du-
rand and Dorsey [2002] compute the filter response by linear inter-
polation of several discretized intensity values, each filtered with
a Gaussian kernel in the frequency domain. Porikli [2008] ex-
tended this idea by using summed area tables to filter each inten-
sity level, and Yang et al. [2009] further extended it to arbitrary
kernels. All of these methods can only be applied to grayscale
images. Paris and Durand [2009] represent the bilateral filter in
5D and perform filtering by downsampling. A simplified version
of this method was shown to perform in real-time on GPUs for
three-dimensional (grayscale) bilateral filtering [Chen et al. 2007].
Adams et al. [2010] proposed the use of uniform simplices to effi-
ciently implement color bilateral filters in 5D.

All these approaches for accelerating bilateral filters derive their
performance from the use of quantization or downsampling. This
leads to runtime and/or memory costs that are inversely propor-
tional to the kernels sizes defined over space (σs) and range (σr).
As a result, their performances are severely affected by the use
of small values of σr (required to enforce edge preservation) or
of σs (needed for small amounts of blurring). Finally, Pham and
Vliet [2005] implement the bilateral filter as a separable operation.
This approach has been successfully used for tasks such as abstrac-
tion; however, its cost is still high for large kernels.

Anisotropic Diffusion & Related Another popular approach for
edge-aware image processing is anisotropic diffusion (AD) [Perona
and Malik 1990]. It is modeled using partial differential equations
(PDEs) and implemented as an iterative process, which is usually
slow. Some approaches have been proposed to improve the speed of
AD [Weickert et al. 1998; Grewenig et al. 2010]. However, they do
so at the cost of accuracy and still hardly achieve interactive perfor-
mance. Kimmel et al. [1997] generalized many diffusion processes
through the use of Beltrami flow.

Farbman et al. [2008] perform edge-preserving smoothing using
a weighted least squares framework. Their approach requires the
solution of a sparse linear system, which limits the performance
of the technique. The solution of linear systems has also been
employed by Levin et al. [2004] for image colorization, and by
Subr et al. [2009] for multiscale image decomposition. More
recently, Fattal [2009] proposed a new family of edge avoiding
wavelets (EAW). This multiscale representation can be quickly
computed, but constrains the sizes of the smoothing kernels (in pix-
els) to powers of two. Criminisi et al. [2010] presented a geodesic
framework for edge-aware filtering defined for grayscale images



that employs quantization of the luma channel. Finally, Farb-
man et al. [2010] proposed the use of diffusion distances for calcu-
lating the affinity among pixels, which can be seamlessly integrated
with our approach.

In contrast to all these techniques, our approach performs real-time
edge-preserving smoothing directly on color images, using kernels
of any size, without resorting to sub-sampling or quantization. It
can be understood as reducing the dimensionality of the input sig-
nal prior to filtering. Lee and Verleysen [2010] present a compre-
hensive survey on dimensionality-reduction techniques.

3 Transform for Edge-Preserving Filtering

Our approach is inspired by the multi-dimensional interpretation of
edge-preserving filters [Barash 2002]. Let I : Ω ⊂ R2 → R3 be a
2D RGB color image, defining a 2D manifold MI in R5 [Kimmel
et al. 1997]. Also, let p̂ = (xp, yp, rp, gp, bp) ∈ MI be a point
on this manifold. p̂ has a corresponding pixel in I with spatial co-
ordinates p = (xp, yp) and range coordinates I(p) = (rp, gp, bp).
Let F (p̂, q̂) be an edge-preserving filter kernel in 5D. J , the image
obtained when filtering I with F can be expressed as

J(p) =

∫
Ω

I(q)F (p̂, q̂) dq, (1)

where
∫

Ω
F (p̂, q̂) dq = 1. For example, disregarding normaliza-

tion, the bilateral filter kernel is given by

F (p̂, q̂) = Gσs(‖p− q‖) Gσr (‖I(p)− I(q)‖), (2)

where ‖·‖ is the `2 norm. Gσs and Gσr are typically Gaussian spa-
tial and range filters, with supports given by σs and σr , respectively.
Since the bilateral filter works in 5D space, its naive implementa-
tion is too slow for many practical uses.

Problem Statement Our work addresses the fundamental ques-
tion of whether there exists a transformation t : R5 → Rl, l < 5,
and a filter kernel H defined over Rl that, for any input image I ,
produce an equivalent result as the 5D edge-preserving kernel F :

J(p) =

∫
Ω

I(q)F (p̂, q̂) dq =

∫
Ω

I(q)H ( t(p̂), t(q̂) ) dq. (3)

This construction becomes attractive when evaluating t plus H is
more efficient than evaluating the original kernel F . In our case,
we are interested in replacing the evaluation of a computationally
expensive edge-preserving filter defined in 5D with a domain trans-
formation t and a lower-dimensional linear filter H , evaluated in
Euclidean space (Rl). While one could try to exactly mimic the
response of a specific filter F (e.g., anisotropic diffusion or the bi-
lateral filter), in this paper we instead focus on finding a transfor-
mation that maintains the edge-preserving property of the filter.

3.1 Distance-Preserving Transforms

When performing edge-preserving smoothing, the amount of mix-
ing between two pixels should be inversely proportional to their dis-
tance, which can be expressed in any metric in the 5D space [Farb-
man et al. 2010]. For example, the bilateral filter uses the `2
norm [Chen et al. 2007], while Criminisi et al. [2010] use the intrin-
sic (geodesic) distance on the image manifold. If the transformation
t preserves the original distances from R5 in Rl, it will also main-
tain the edge-preserving property of a filter defined in the lower-
dimensional space.

A distance-preserving transformation is known as an isome-
try [O’Neill 2006], and finding one is not an easy task. Let us
consider the case of mapping a grayscale image to a plane, which
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Figure 2: Curve C defined by the graph (x, I(x)), x ∈ Ω (left).
In `1 norm, ‖(x + h, I(x + h)) − (x, I(x))‖ = h + d = h +
|I(x+ h)− I(x)| (center). Arc length of C, from u to w (right).

involves finding an isometry t : R3 → R2. This can be visualized
as trying to flatten a heightfield without introducing any metric dis-
tortions. Unfortunately, it is known that such mappings do not exist
in general (they only exist for surfaces with zero Gaussian curva-
ture) [O’Neill 2006], and only approximate solutions can be found.

For our purpose of edge-aware filtering, preserving the distances
among pixels is essential. Approximate solutions introduce hard
to predict and image-dependent errors (see supplementary materi-
als). Furthermore, existing approaches from the dimensionality-
reduction [Belkin and Niyogi 2003] and texture-mapping [Lévy
et al. 2002] literature use optimization methods, which are too slow
for our use in real-time edge-preserving filtering. While a solution
for a 2D domain does not exist in general, Section 4 shows that an
isometric transform exists for a 1D domain. Section 5 then shows
how this 1D transform can be effectively used to filter 2D color
images.

4 Domain Transform

For deriving an isometric 1D transform, let I : Ω → R, Ω =
[0,+∞) ⊂ R, be a 1D signal, which defines a curve C in R2 by
the graph (x, I(x)), for x ∈ Ω (Figure 2, left). Our goal is to
find a transform t : R2 → R which preserves, in R, the original
distances between points on C, given by some metric. Thus, let
S = {x0, x1, . . . , xn} be a sampling of Ω, where xi+1 = xi + h,
for some sampling interval h. We seek a transform t that satisfies
|t(xi, I(xi))− t(xj , I(xj))| = ‖(xi, I(xi))− (xj , I(xj))‖, where
xi, xj ∈ S, |.| is the absolute value operator, and ‖.‖ is some cho-
sen metric. For simplicity, we use the nearest-neighbor `1 norm;
thus, t only needs to preserve the distances between neighboring
samples xi and xi+1. As we will soon show, this choice gives rise
to the geodesic metric. Finally, let ct(x) = t(x̂) = t(x, I(x)).
To be isometric, the desired transform must satisfy the following
equality (in `1 norm) (Figure 2, center):

ct(x+ h)− ct(x) = h+ |I(x+ h)− I(x)| , (4)

which states that the Euclidean distance between neighboring sam-
ples in the new domain (R) must equal the `1 distance between
them in the original domain (R2). To avoid the need for the abso-
lute value operator on the left of (4), we constrain ct to be mono-
tonically increasing — i.e., ct(x+h) ≥ ct(x). Dividing both sides
of (4) by h and taking the limit as h→ 0 we obtain

ct′(x) = 1 +
∣∣I ′(x)

∣∣ , (5)

where ct′(x) denotes the derivative of ct(x) with respect to x. In-
tegrating (5) on both sides and letting ct(0) = 0, we get

ct(u) =

∫ u

0

1 +
∣∣I ′(x)

∣∣ dx, u ∈ Ω. (6)

Intuitively, ct is “unfolding” the curve C defined in R2 (Figure 2,
left) into R, while preserving the distances among neighboring sam-
ples. Moreover, for any two points u and w in Ω, w ≥ u, the
distance between them in the new domain is given by

ct(w)− ct(u) =

∫ w

u

1 +
∣∣I ′(x)

∣∣ dx, (7)



which is the arc length of curve C in the interval [u,w], under the
`1 norm (Figure 2, right). As such, the transformation given by
Equation 6 preserves the geodesic distance between all points on
the curve. A similar derivation is possible for the `2 norm or per-
haps other metrics.

Multichannel Signals For edge-preserving filtering, it is impor-
tant to process all channels of the input signal at once, as pro-
cessing them independently should introduce artifacts around the
edges [Tomasi and Manduchi 1998]. For a 1D signal I : Ω → Rc
with c channels defining a curveC in Rc+1, one can apply a similar
derivation to obtain the multichannel transformation:

ct(u) =

∫ u

0

1 +

c∑
k=1

∣∣I ′k(x)
∣∣ dx, (8)

where Ik is the k-th channel of signal I . In the case I is an im-
age, Ik can be a color channel in some color space (e.g., RGB or
CIE Lab), or a more complex representation, such as a diffusion
map [Farbman et al. 2010]. Equation 8 defines a warping ct : Ω→
Ωw of the signal’s 1D spatial domain by the isometric transform
t : Rc+1 → R, where ct(u) = t(û) = t(u, I1(u), . . . , Ic(u)). We
call ct a domain transform.

4.1 Application to Edge-Preserving Filtering

Equation 8 reduces the evaluation domain of the filter from Rc+1 to
R. Thus, the filterH (see Equation 3) is one-dimensional. Since our
transformation is isometric, any filter H , whose response decreases
with distance at least as fast as F ’s, will be edge-preserving. Sec-
tion 6 discusses some choices ofH . By reducing the dimensionality
of the filter from c + 1 to 1, it may seem that we lost the ability to
control its support over the signal’s space and range (i.e., control the
values of σs and σr , in bilateral filter notation). But, as we show,
one can encode the values of σs and σr in the transformation itself.

Given a 1D signal I and a 1D filtering kernel H (with unit area),
we can define Ia(u) = I(u/a), which stretches/shrinks I by a, and
H1/a(u−τ) = H(au−τ) a, which shrinks/stretchesH by 1/a and
renormalizes it to unit area, where τ is a translation. Representing
the convolution operator by ∗,

(I ∗H1/a)(τ) =

∫ +∞

−∞
I(u)H1/a(u− τ) du = (Ia ∗H)(τ).

(9)
Thus, under convolution, scaling the filter’s support by 1/a is
equivalent to scaling the signal’s support by a (and vice-versa).
Therefore, to encode the filter’s support onto the domain transform,
we: (i) derive ai, for each dimension di of the signal I , from the
desired support of filter F over di; (ii) scale each di by its cor-
responding ai; (iii) apply the domain transform to the scaled sig-
nal; and (iv) filter the signal in 1D using H . This is an important
observation, since it shows that the support of the original multi-
dimensional kernel F can be completely encoded in 1D. We will
refer to the desired variances of the filter F over the signal’s spatial
domain Ω as σ2

s , and over the signal’s range as σ2
rk , k ∈ {1, . . . , c},

for all channels k.

Obtaining the scaling factors By the scaling property of vari-
ances [Loeve 1977]:

σ2
rk = V ar(H1/a) = V ar(H/a) = V ar(H)/a2 = σ2

H/a
2;

which solves to a = σH/σrk , where σ2
H is the variance of filter H .

The scaling factor for the spatial domain Ω is given by a = σH/σs.
Note that the scaling factor ‘a’ may vary for each dimension in
Rc+1, allowing the definition of anisotropic filtering in 1D. These
results are valid and produce correct filtering for any value σH > 0.

Ω

I

(a) Ω

ct(u)

(b)
Ωw

Iw

(c)
Ωw

G{Iw}

(d) Ω

Gw{I}

(e)

Figure 3: 1D edge-preserving filtering using ct(u). (a) Input signal
I . (b) ct(u). (c) Signal I plotted in the transformed domain (Ωw).
Signal I filtered in Ωw with a 1D Gaussian (d) and plotted in Ω (e).

Scaling the Signal According to Equation 9, before it can be
filtered by H , the signal I should be scaled by ‘a’ prior to eval-
uating the domain transform. Scaling the distances in the right-
hand side of Equation 4 by the appropriate a factors (i.e., ash +
ar |I(x+ h)− I(x)|) and carrying out the derivation, one obtains

ct(u) =

∫ u

0

σH
σs

+

c∑
k=1

σH
σrk

∣∣I ′k(x)
∣∣ dx. (10)

Since σH is a free parameter, we let σH = σs and obtain our final
domain transform, where a single value of σr has been used for
all channels for simplicity:

ct(u) =

∫ u

0

1 +
σs
σr

c∑
k=1

∣∣I ′k(x)
∣∣ dx. (11)

Filtering the signal in the transformed domain is done through 1D
convolution withH . Further details are presented in Section 6. Fig-
ure 3 illustrates the use of a domain transform for filtering the 1D
signal I , shown in (a) in its original domain Ω. (b) shows the as-
sociated domain transform ct(u) computed using Equation 11. (c)
shows signal I in the transformed domain Ωw or, more compactly,
Iw(ct(u)) = I(u). The result of filtering I with a Gaussian fil-
ter H in Ωw is shown in (d). (e) shows the desired filtered signal
obtained by reversing ct(u) for the signal shown in (d). The small-
scale variations were eliminated and the strong edges preserved.

4.2 Analysis

This section analyzes the filtering-related properties of our do-
main transform (Equation 11). As ct(x) is applied to a 1D signal I ,
its domain is locally scaled by

ct′(x) = 1 +
σs
σr

∣∣I ′(x)
∣∣, (12)

where the summation over all channels has been omitted for sim-
plicity. According to Equation 9, scaling the input signal I by
ct′(x) is equivalent to scaling the support of the filter H by
1/ct′(x). Thus, the amount of local smoothing introduced by H
in the signal at I(x), can be expressed as

smoothingH(x) ∝ (σH
/
ct′(x)) = σs

/(
1 +

σs
σr

∣∣I ′(x)
∣∣) .

(13)
Using (13), we analyze the relationship of H’s response with the
parameters σs and σr , as well as with I(x):

lim
σr→∞

smoothingH(x) = σs, lim
σr→0

smoothingH(x) = 0,

lim
σs→∞

smoothingH(x) =
σr
|I ′(x)| , lim

σs→0
smoothingH(x) = 0,

lim
|I′(x)|→∞

smoothingH(x) = 0, lim
|I′(x)|→0

smoothingH(x) = σs.

Relationship to σr When σr approaches infinity, ct(x) = x,
and, as expected, H’s response will be no longer edge-preserving,
but a smoothing one proportional to σs. When σr approaches zero,
ct′(x) goes to infinity, and any filter H with compact support will
produce a filtered signal identical to the input, as expected.
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Figure 4: 2D edge-preserving smoothing using two-pass 1D filter-
ing. (a) p and q belong to same region. (b) One horizontal pass.
(c) One complete iteration (i.e., horz.+vert. pass). Information
from p cannot yet reach q. (d) After an additional horizontal pass.
(e) Two complete iterations (i.e., horz.+vert.+horz.+vert. passes).

Relationship to σs Interestingly, as σs approaches infinity, H
does not produce unbounded smoothing in the image. This is ex-
actly what is expected from an edge-preserving filter when σr is
held constant. Furthermore, the amount of smoothing is inversely
proportional to the gradient magnitude of the signal, which is the
most commonly used estimator of image edges. Finally, when σs
approaches zero, no smoothing is performed, as expected.

Relationship to I When the gradient magnitude of the input sig-
nal is very large, no smoothing is performed. On the other hand, in
regions where the gradient magnitude is not significant, smoothing
is performed with the same response of a linear smoothing filter.
Note that in both cases, our filter behaves as an edge-preserving
one.

5 Filtering 2D Signals

Equation 11 defines a domain transform for 1D signals. Ideally,
an inherently 2D transform ct(x, y) should be used for 2D signals,
directly mapping the content at positions (x, y) in the original do-
main to positions (u, v) in the transformed domain. Unfortunately,
as discussed in Section 3, ct(x, y) (i.e., t : Rc+2 → R2) does not
exist in general [O’Neill 2006]. Since it is not possible to simul-
taneously satisfy all the distance requirements in R2, the use of a
space with higher-dimensionality would be needed, implying addi-
tional computational and memory costs. To avoid these extra costs,
we use our 1D transform to perform 2D filtering.

The most common approach for filtering 2D signals using 1D op-
erations is to perform separate passes along each dimension of the
signal. For an image, this means performing a (horizontal) pass
along each image row, and a (vertical) pass along each image col-
umn [Smith 1987; Oliveira et al. 2000]. Assuming the horizontal
pass is performed first, the vertical pass is applied to the result pro-
duced by the vertical one (and vice-versa). This construction is
extensively used with standard separable linear filters [Dougherty
1994] and anisotropic diffusion [Weickert et al. 1998], and is also
related to the computation of geodesic distances on the image man-
ifold using raster-scan algorithms [Criminisi et al. 2010].

One caveat is that filtering a 2D signal using a 1D domain transform
is not a separable operation; otherwise, this would be equivalent to
performing ct(x, y) in 2D. Since edge-preserving filters should not
propagate information across strong edges, they cannot be imple-
mented using a single iteration of a two-pass 1D filtering process
(i.e., a horizontal pass followed by a vertical one, or vice-versa).
This situation is illustrated in Figure 4, where pixels p and q belong
to a same region (represented in white in (a)) and, therefore, should
have their information combined. Figure 4 (b) shows, in blue, the
region reachable from p after one horizontal pass; and (c) after one
complete iteration (assuming that the horizontal pass is performed
first). The region reachable from q is analogous. By not reaching
the entire white region after one iteration, this process may intro-
duce visual artifacts perceived as “stripes” (indicated by the black
arrow in Figure 4 (c)). For this example, one additional horizon-

(a) Input (b) 1 itr. (c) 3 itr.

(d) Details from Input (a) (e) Details from 3 itr. (c)

Figure 5: Two-pass 1D filtering (σH = σs = 40 and σr = 0.77).
(a) Input image. (b) One filtering iteration. (c) Three filtering itera-
tions. (d) Details from (a). (e) Details from (c). The image content
has been smoothed while its edges have been preserved.

tal pass would be needed to propagate p’s information to the entire
white region, thus eliminating the stripe (Figure 4 (d)). Further
passes do not alter the result (e).

The required number of horizontal and vertical passes depends on
(the geometry of) the image content, and, therefore, is hard to pre-
dict. However, we use two key observations to make these arti-
facts unnoticeable in the filtered images: (i) stripes are only present
along the last filtered dimension: a horizontal (vertical) step re-
moves stripes introduced by the previous vertical (horizontal) step;
and (ii) the length of the stripes is proportional to the size of the
filter support used in the last pass. Thus, we interleave a sequence
of vertical and horizontal passes, such that the two 1D filters used in
each iteration (consisting of a vertical and a horizontal filter) have
a σ value that is half of the one used in the previous iteration. This
progressively reduces the extension of the artifacts, making them
virtually unnoticeable. In practice, three iterations usually suffice
to achieve good results (Section 5.1). During a horizontal pass, I ′

in Equation 11 is the partial derivative computed along the rows of
image I , while, in a vertical pass, I ′ represents the partial derivative
computed along the image columns.

Since variances (and not standard deviations) add [Loeve 1977],
care must be taken when computing the σH value for each itera-
tion: we must use standard deviations that halve at each step and
whose squared sum matches the original desired variance σ2

H . This
is achieved by the following expression:

σHi = σH
√

3
2N−i√
4N − 1

, (14)

where σHi is the standard deviation for the kernel used in the i-th
iteration,N is the total number of iterations, and σH is the standard
deviation of the desired kernel. The image resulting from the i-th
iteration is used as input for the (i + 1)-th iteration. The domain
transform ct(x) is computed only once (for the original image) and
used with all the different scales of the filter H .



Figure 6: Filtering of diagonal edges. (Left) Input image
(1280×960 pixels). (Center) Filtered image with two iterations of
our two-pass 1D filter (σH = σs = 50 and σr = 0.5). (Right)
Detail from the filtered image.

Figures 5 (b) and (c) illustrate the results of performing, respec-
tively, one and three 1D edge-preserving filtering iterations on the
image shown in (a). Figure 5 (d) and (e) compare the face of the
statue before and after the filtering operation, and shows that small
scale details have been smoothed while the important edges have
been preserved. Although our filter is performed as a series of 1D
operations along rows and columns, it correctly handles diagonal
edges. Figure 6 illustrates this property on an example contain-
ing several sharp edges at various slopes. The image on the center
shows the filtered result obtained using only two iterations of our
two-pass 1D filter. The original edges have been faithfully pre-
served, while the colors have been properly filtered.

The decomposition of a 2D edge-preserving filter as a sequence of
1D filtering operations can be generalized to higher dimensions.
Unfortunately, this also causes the filter not to be rotationally in-
variant. However, this is also true for other fast edge-preserving
filters [Farbman et al. 2008; Fattal 2009].

5.1 Convergence Analysis

Artifact-free filtered images can be obtained by increasing the num-
ber of iterations. Here, we describe an experiment designed to em-
pirically analyze the convergence of the 2D filtering process. For
color images with channels in the [0, 1] range, ten to twelve iter-
ations are sufficient to cause the mean-square difference between
the results of subsequent iterations to fall below the threshold of
10−4, defined experimentally. The quality of a filtered result ob-
tained after n iterations is evaluated by comparing it to the result
obtained for the same image after 15 iterations, which, for practical
purposes, can be considered artifact free. The comparison is per-
formed using the Structural Similarity (SSIM) index [Wang et al.
2004]. SSIM is an image-quality metric consistent with human
perception. Its structural nature makes it appropriate for detect-
ing “stripes”. Since the SSIM index detects similarity, we use its
complement (1− SSIM) as an error measure.

The graph in Figure 7 summarizes the errors measured for various
numbers of filtering iterations. These results represent the maxi-
mum errors obtained while filtering 31 natural images with various
contents. Each curve corresponds to a fixed value of σr . For each
point along a σr curve, we plot the maximum error obtained among
all values of σs ∈ {1, 10, 20, 40, 60, 80, 100, 200, 500, 1000,
3000}. The graph shows that the dissimilarity metric decreases
quickly with the first three iterations, which defines a good tradeoff
between filtering quality and computational time.

6 Filtering in the Transformed Domain

Given a domain transform ct : Ω → Ωw, the transformed signal
Iw(ct(x)) = I(x) is then filtered using the 1D kernel H . This
section discusses alternatives for performing this filtering operation
on digital signals, where Iw will likely be non-uniformly sampled.
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Figure 7: Maximum measure of dissimilarity (according to SSIM)
between filtered images and their corresponding “ideal” results as
a function of number of iterations, for different values of σr .

6.1 Normalized Convolution (NC)

Filtering the non-uniformly sampled signal Iw(ct(x)) in Ωw can
be seen as filtering a uniformly sampled signal with missing sam-
ples (Figure 8, left). This scenario has been studied by Knutsson
and Westin [1993] in the context of data uncertainty, where they
showed that optimal filtering results, in the mean square sense, are
obtained by normalized convolution (NC). For a uniform discretiza-
tionD(Ω) of the original domain Ω, NC describes the filtered value
of a sample p ∈ D(Ω) as

J(p) = (1/Kp)
∑

q∈D(Ω)

I(q) H ( t(p̂), t(q̂) ) , (15)

where Kp=
∑
q∈D(Ω) H( t(p̂), t(q̂) ) is a normalization factor for

p, and t(p̂) = ct(p). For N samples and an arbitrary kernel H ,
the cost of evaluating Equation 15 for all p is O(N2). However, as
ct(x) is monotonically increasing (Equation 11), we use an efficient
moving-average approach [Dougherty 1994] to perform NC with a
box filter in O(N) time. The box kernel is defined as

H ( t(p̂), t(q̂) ) = δ
{
|t(p̂)− t(q̂)| ≤ r

}
, (16)

where r = σH
√

3 is the filter radius, and δ is a boolean function
that returns 1 when its argument is true, and 0 otherwise. This
box kernel has a constant radius in Ωw, but a space-varying and
non-symmetric radius in Ω, where its size changes according to the
similarity between p and its neighborhood in the image manifold
MI (Figure 8, right, in blue). This can be interpreted as an esti-
mate of which neighbors belong to the same population as p. The
box kernel is then a robust estimator of the population mean, with
connections to robust anisotropic diffusion [Black et al. 1998] and
bilateral filtering [Durand and Dorsey 2002].

The cost of evaluating Equation 15 using the box kernel from Equa-
tion 16 is linear in the number of samples. We use it for the 1D fil-
tering iterations described in Section 5, with σHi defined by Equa-
tion 14. For three iterations, the resulting filter produces an indis-
tinguishable approximation to a Gaussian filter (PSNR > 40) when
σr = ∞. Figure 11 compares this result to the ones obtained with
several other filters.

CPU Implementation Since samples are not uniformly spaced
in Ωw, the number of samples added to and removed from the ker-
nel window as it slides from one sample to the next is not constant.
Thus, performing box filtering in Ωw requires updating Kp, plus
one additional memory read per sample to check its domain coor-
dinate. One only needs to perform convolution at positions in Ωw
that contain samples, as other positions will not contribute to the
filtered image in the (discrete) original domain. Finally, derivatives
are estimated using backward differences.

GPU Implementation Our domain transform is highly parallel:
each thread calculates the value of ct′(x) (Equation 12) for one
sample, and a scan operation performs the integration. For filtering,
each thread computes the filtered value of one pixel. To find the first
and last pixels inside the current 1D kernel window, we perform two
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Figure 8: Filtering in the transformed domain. (Left) Normalized
convolution (NC). (Center) Interpolated convolution (IC). (Right)
Their interpretation: NC box kernel in blue, IC box kernel in red.

binary searches on the transformed domain (Ωw) coordinates. Once
the first and last pixels under the 1D kernel have been identified, the
sum of the colors of all contributing pixels is calculated using a 1D
summed area table (per color channel). These tables need to be
updated before each horizontal/vertical pass.

6.2 Interpolated Convolution (IC)

Another option when dealing with irregularly sampled data is to
use interpolation for approximating the original continuous func-
tion [Piroddi and Petrou 2004]. Figure 8 (center) shows a recon-
structed signal Lw obtained by linear interpolation (in Ωw) of the
samples shown in Figure 8 (left). Filtering Lw is performed by
continuous convolution:

J(p) =

∫
Ωw

Lw(x) H ( t(p̂), x ) dx, (17)

where H is a normalized kernel. Interpolated convolution has an
interesting interpretation: a linear diffusion process working on the
signal. Figure 8 (right) shows this interpretation for a box filter of
radius r, where the kernel window is shown in red. This is the same
interpretation as the 1D Beltrami flow PDE [Sochen et al. 2001].

Implementation For a box filter, Equation 17 can be evaluated
for all pixels inO(N) time. This is achieved by a weighted moving-
average [Dougherty 1994]. The normalized box kernel is given by

H ( t(p̂), x ) = δ
{
|t(p̂)− x| ≤ r

}/
2 r, (18)

where r = σH
√

3 is the filter radius. Substituting (18) in (17):

J(p) =
1

2 r

∫ t(p̂)+r

t(p̂)−r
Lw (x) dx. (19)

The linearly-interpolated signal Lw does not need to be uniformly
resampled, since the area under its graph can be explicitly computed
using the trapezoidal rule.

6.3 Recursive Filtering (RF)

For a discrete signal I[n] = I(xn), non edge-preserving filtering
can be performed using a 1st-order recursive filter as

J [n] = (1− a) I[n] + a J [n− 1], (20)

where a ∈ [0, 1] is a feedback coefficient [Smith 2007]. This fil-
ter has an infinite impulse response (IIR) with exponential decay:
an impulse of magnitude m at position i generates a response of
magnitude m (1 − a) aj−i at j ≥ i. Note that j − i can be in-
terpreted as the distance between samples xi and xj , assuming a
unitary sampling interval. Based on this observation, a recursive
edge-preserving filter can be defined in the transformed domain as

J [n] = (1− ad) I[n] + ad J [n− 1], (21)

where d = ct(xn) − ct(xn−1) is the distance between neighbor
samples xn and xn−1 in the transformed domain (Ωw). As d in-
creases, ad goes to zero, stopping the propagation chain and, thus,

NC IC RF

BF AD WLS

Figure 9: Impulse response for various filters at neighborhoods
without (left) and with strong edges (right). NC: Normal. Convolu-
tion; IC: Interp. Convolution; RF: Recursive Filter; BF: Bilateral
Filter; AD: Anisotropic Diffusion; WLS: Weighted Least Squares.

preserving edges. This can be interpreted as a geodesic propagation
on the image lattice. The impulse response of (21) is not symmet-
ric, since it only depends on previous inputs and outputs (it is a
causal filter). A symmetric response is achieved by applying the
filter twice: for a 1D signal, (21) is performed left-to-right (top-to-
bottom) and then right-to-left (bottom-to-top).

The feedback coefficient of this filter is computed from the de-
sired filter variance as a = exp(−

√
2/σH) (see the appendix for

a derivation). Since a ∈ [0, 1], the filter is stable [Smith 2007], and
its implementation in O(N) time is straightforward.

7 Comparison to Other Approaches

We compare our edge-preserving filters based on normalized con-
volution (NC), interpolated convolution (IC), and recursion (RF)
against previous works: brute-force bilateral filter (BF) [Tomasi
and Manduchi 1998]; anisotropic diffusion (AD) [Perona and Malik
1990]; edge-avoiding wavelets (EAW) [Fattal 2009]; weighted least
squares filter (WLS) [Farbman et al. 2008], which has been shown
to produce optimal results for tone and detail manipulation; and fi-
nally the permutohedral lattice BF (PLBF) [Adams et al. 2009] and
constant time BF (CTBF) [Yang et al. 2009], which are, respec-
tively, the fastest color and grayscale bilateral filter approximations.

Filter Response Figure 9 shows a comparison of the impulse
response of our three filters NC, IC and RF (all performed using
three iterations) against the impulse response of BF, AD and WLS.
The NC and IC filters have Gaussian-like response, similar to AD
and BF. In the presence of strong edges, the IC filter behaves simi-
larly to AD. The NC filter has a higher response near strong edges,
which is a direct implication of its interpretation as a robust mean:
pixels near edges have less neighbors in the same population, and
will weight their contribution strongly. Finally, our recursive fil-
ter (RF) has an exponential impulse response which is completely
attenuated by strong edges, like the WLS’s response.

The NC filter is ideal for stylization and abstraction, since it accu-
rately smoothes similar image regions while preserving and sharp-
ening relevant edges. For applications where sharpening of edges
is not desirable (e.g., tone mapping and detail manipulation), the IC
and RF filters produce results of equal quality as the state-of-the-art
techniques [Farbman et al. 2008; Fattal 2009]. Finally, for edge-
aware interpolation (e.g., colorization and recoloring), the RF filter
produces the best results due to its infinite impulse response, which
propagates information across the whole image lattice. Section 8
illustrates the use of our filters for all these applications.

Smoothing Quality Figure 10 shows a side-by-side comparison
of edge-aware smoothing applied to a portion of the photograph
shown in Figure 1 (a). For small amounts of smoothing, the bilat-
eral filter (b) and our NC filter (c) produce visually similar results.
For further smoothing, the bilateral filter may incorrectly mix col-
ors, as observed in the window frame (Figure 10 (d)). In contrast,
our filter manages to continuously smooth image regions while pre-
serving strong edges. This effect, illustrated in Figure 10 (e), is sim-



(a) Input (b) BF, σs = 17 (c) NC, σs = 17 (d) BF, σs = 40

(e) NC, σs = 80 (f) WLS (g) AD (h) EAW

Figure 10: Qualitative comparison of the results of bilateral filters
(BF) with σr = 0.2 (b and d), our normalized convolution filter
(NC) with σr = 0.8 (c and e), weighted least squares filter (WLS)
(f) with λ = 0.15 and α = 2, anisotropic diffusion (AD) (g), and
the edge-avoiding wavelets (EAW) (h).

ilar to the results obtained with WLS, shown in (f), and anisotropic
diffusion (using [D’Almeida 2004]), shown in (g). Since the scale
of EAW cannot be freely controlled, the technique is not ideal for
edge-preserving smoothing. Figure 10 (h) shows the result pro-
duced by EAW with a maximum decomposition depth of 5 and co-
efficients for each detail level defined by 0.6(5−level), which pre-
serve some high-frequency details. Setting these coefficients to zero
results in distracting artifacts. Additional comparisons among these
techniques can be found in the supplementary materials.

Our filters converge to standard linear smoothing filters on regions
with weak edges, or when the range support σr is set to a large
value (see Section 4.2). This feature is desirable, for instance, in
joint filtering for performing depth-of-field effects, as shown in Fig-
ure 1 (g) and discussed in Section 8. Figure 11 shows that previous
techniques have difficulty to simulate a regular smoothing filter, ei-
ther because their kernels cannot be explicitly controlled, as in the
cases of WLS (b) and EAW (c); or because the downsampling re-
quired for performance introduces structural artifacts, as in the case
of PLBF (d). In contrast, our filters provide an indistinguishable
approximation to a Gaussian (f) for σr =∞, as shown in (e).

7.1 Performance Evaluation

This section reports performance numbers obtained on a 2.8 GHz
Quad Core PC with 8 GB of memory and a GeForce GTX 280.

Filtering on CPU We implemented our NC and RF filters on
CPU using C++. For the IC filter we have a MATLAB implemen-
tation, but its performance is expected to be similar to NC’s. On a
single CPU core, the typical runtimes of our NC and RF filters for
processing a 1 megapixel color image using three iterations are 0.16
and 0.06 seconds, respectively. Their performances scale linearly
with image size, filtering 10 megapixel color images in under 1.6
and 0.6 seconds. On a quad-core CPU, we achieve a 3.3× speedup.

We compare the performance of our edge-aware filters against the

(a) Input (b) WLS (c) EAW (d) PLBF (e) Our NC (f) Gaussian

Figure 11: Approximating a Gaussian filter. Parameters from all
approaches where tuned to best approximate a Gaussian with σ =
15. For the NC filter, σs = 15, and σr = ∞. Note that WLS and
EAW were not designed to approximate Gaussian blur. Best viewed
in the electronic version.

fastest filters from previous works: EAW, PLBF and CTBF. The
PLBF and our NC and RF filters process all three color channels si-
multaneously, while CTBF only processes grayscale. Thus, CTBF
is actually performing one third of the work done by the other three
methods. We measured the reported results on a single CPU core.
For PLBF and CTBF we used source code provided by the authors.

The runtimes for both PLBF and CTBF are inversely proportional
to the value of σr . For σr approaching zero, their runtimes are
above 10 seconds. The runtimes of our filters are independent of the
σs and σr parameters, and they use no simplifications to improve
performance. In our experience, to achieve good edge-preserving
smoothing with PLBF or CTBF values of σr < 0.15 should be
used. In this range, our filters with three iterations are 5 to 15×
faster than these approaches. For small amounts of smoothing, one
can obtain good results using two or even one iteration of our filter
(Figure 7), with speed-ups of 25 to 40× over PLBF for color filter-
ing. According to Fattal [2009], EAW can smooth a 1 megapixel
grayscale image in 0.012 seconds on a 3.0 GHz CPU. Since it gen-
erates decompositions at only a few scales, it is not generally ap-
plicable for edge-preserving smoothing. WLS takes 3.5 seconds
to solve its sparse linear system using a fast CPU implementation.
A graph comparing the performances of these techniques can be
found in the supplementary materials.

Filtering on GPU We implemented our NC filter on GPU using
CUDA. The total time required for filtering a 1 megapixel color im-
age is 0.7 msec for computing the domain transform plus 2 msec
for each 2D filtering iteration. This gives a total runtime of approx-
imately 0.007 seconds for three iterations of our filter— a speedup
of 23× compared to our one-core CPU implementation. Since our
filter scales linearly with the image size, our GPU implementation
is able to filter 10 megapixel color images in under 0.07 seconds.

We compare the performance of our GPU filter against the GPU
Bilateral Grid [Chen et al. 2007]. While their implementation is as
fast as ours, it only processes luminance values, which may gen-
erate undesired color-ghosting artifacts. Their approach draws its
efficiency from downsampling, which is not possible for small spa-
tial and range kernels. The GPU implementation of PLBF can filter
a 0.5 megapixel image in 0.1 sec on a GeForce GTX 280 [Adams
et al. 2010]. A GPU implementation of WLS filters a 1 megapixel
grayscale image in about 1 second [Farbman et al. 2008].

8 Real-Time Applications

We show a variety of applications that demonstrate the versatility
of our domain transform and filters for image processing. Given its
speed, our approach can be performed on the fly on high-resolution
images and videos. This improved performance provides users with
instant feedback when tuning filter parameters. Examples of video
applications are included in the supplementary materials.



(a) Input (b) Ours (IC) (c) EAW

Figure 12: Fine detail manipulation. (a) Input image. (b) Our
result. J1 was obtained with the IC filter (σs = 20 and σr = 0.08).
(c) EAW result by Fattal [2009].

(a) Ours (RF) (b) WLS

Figure 13: Tone mapping results: (a) using our RC filter and (b)
using the WLS filter.

Detail Manipulation Edge-preserving filters can be used to
decompose image details into several scales, which can be ma-
nipulated independently and recombined to produce various ef-
fects [Farbman et al. 2008; Fattal 2009]. Let J0, . . . , Jk be pro-
gressively smoother versions of an image I = J0. Several de-
tail layers capturing progressively coarser details are constructed
as Di = Ji − Ji+1. Figure 12 shows an example of fine-scale de-
tail enhancement applied to the flower image in (a). The result in
(b) was created by filtering the image in (a) once using our IC fil-
ter (σs = 20 and σr = 0.08) and by manipulating the detail layer
D0 using a sigmoid function described by Farbman et al. [2008].
Figure 12 (c) shows the result produced by an EAW filter of Fat-
tal [2009]. The images (b) and (c) present similar visual quality.
Our filter, however, allows for extra flexibility when decomposing
image details, since it can produce a continuum of smoothed images
Ji, by varying the values of the parameters σs and σr .

Tone Mapping Edge-aware tone mapping avoids haloing and
other artifacts introduced in the compression process. Figure 13
compares the result of a tone mapping operator implemented using
our RF filter (a) and the WLS filter by Farbman et al. [2008] (b).
The quality of these results are similar, but our filter is significantly
faster, resulting in the fastest high-quality tone-mapping solution
available. The result in Figure 13 (a) was obtained by manipulating
three detail layers from the HDR image’s log-luminance channel.
Each layer was obtained in 12 msec using two iterations of our RF
filter with: σs = 20 and σr = 0.33 for J1; σs = 50 and σr = 0.67

Figure 14: High-contrast edges around the most salient features of
an edge-aware filtered image, producing a stylized look.

for J2; and σs = 100 and σr = 1.34 for J3. The compressed
luminance channel LC was obtained as:

LC = 0.12 + µ+ 0.9 (B − µ) + 0.3 D0 + 0.2 D1 + 0.2 D2;

where B is a linear compression of J3 to the range [0, 1] (i.e., B =
(J3−min(J3))/(max(J3)−min(J3))), and µ is the mean value
of B. Ji and Di were defined in the previous paragraph.

Stylization Stylization aims to produce digital imagery with a
wide variety of effects not focused on photorealism. Edge-aware
filters are ideal for stylization, as they can abstract regions of low-
contrast while preserving, or enhancing, high-contrast features.
Figure 14 illustrates an application of our NC filter to produce ab-
stracted results. Given an input image (top left), the magnitude of
the gradient of the filtered image (top right) is superimposed to the
filtered image itself to produce high-contrast edges around the most
salient features. Another interesting stylization effect can be ob-
tained by assigning to each output pixel a scaled version of the value
of the normalization factor Kp from Equation 15. This produces a
pencil-like non-photorealistic drawing, such as the one shown in
Figure 1 (f), obtained scaling Kp by 0.11.

Joint Filtering Our approach can also be used for joint filter-
ing, where the content of one image is smoothed based on the edge
information from a second image. For instance, by using the val-
ues of an alpha matte [Gastal and Oliveira 2010] as the the image
derivatives in Equation 11, one can simulate a depth-of-field ef-
fect (Figure 1 (g)). This example emphasizes why converging to a
Gaussian-like response is an important property of our filter. Alpha
mattes can also be combined with other maps to create some local-
ized or selective stylization, as shown in Figure 15. In this example,
an alpha matte and a structure resembling a Voronoi diagram have
been added to define new edges to be preserved (Figure 15, bottom
left). The resulting filter produces a unique stylized depth-of-field
effect. The edges of the diagram were then superimposed to the
filtered image to create the result shown on the right. A similar re-
sult is shown in Figure 1 (d), where the edges to be preserved were
identified by a Canny edge detector.

Colorization Similar to previous approaches [Levin et al. 2004;
Fattal 2009], we propagate the colors S from user-supplied scrib-
bles by blurring them using the edge information from a grayscale
image I (Figure 16, left). To keep track of how much color propa-
gates to each pixel, we also blur a normalization function N , which
is defined to be one at pixels where scribbles are provided and
zero otherwise. Let S̃ and Ñ be the blurred versions of S and
N , respectively. The final color of each pixel p is obtained as
S̃(p)/Ñ(p). This value is combined with the original luminance
from the grayscale image to produce the colorized result. Figure 16
compares the results obtained with our RF filter (σs = 100 and



Figure 15: Stylized depth-of-field effect. (Top Left) Input image.
(Bottom Left) Alpha matte combined with a Voronoi-like diagram.
(Right) Result produced by our edge-aware filter using joint filter-
ing. See text for details.

σr = 0.03) with the ones of Levin et al. [2004]. In our experience,
good colorization results can be obtained with values of σr from
0.01 to 0.1 and σs > 100.

Recoloring Localized manipulations of image colors is achieved
using soft segmentation. Color scribbles define a set of regions of
interest, where each region Ri is defined by a color ci. For each
region Ri, an influence map [Lischinski et al. 2006] is obtained by
blurring its associated normalization function NRi defined by all
scribbles with color ci. The contribution of Ri for the recoloring
of pixel p is defined as ÑRi(p)/

∑
j ÑRj (p). Figure 1 (e) shows a

recoloring example obtained using this technique.

Our filters are temporally stable and can be applied to videos in real
time. Please, see the accompanying video for examples.

9 Conclusions and Future Work

We have presented a new approach for performing high-quality
edge-preserving filtering of images and videos in real time. Our
solution is based on a transform that defines an isometry between
curves on the 2D image manifold in 5D and the real line. This trans-
form preserves the geodesic distance between points on the curve,
adaptively warping the input signal so that 1D edge-preserving fil-
tering can be efficiently performed in linear time. We demon-
strated three realizations for our 1D edge-preserving filters, based
on normalized convolution, interpolated convolution, and recur-
sion. These filters have very distinct impulse responses, making
each one more appropriate for specific applications.

We have shown how to produce high-quality 2D edge-preserving
filtering by iterating 1D-filtering operations. We analyzed the con-
vergence of this process and showed that three iterations provide a
good compromise between image quality and computational time.

Our approach has several desirable features. First, it is applied to
the signal’s original samples, correctly handling color images. Sec-
ond, the use of 1D operations leads to considerable speedups over
existing techniques and potential memory savings. Third, its com-
putational cost is not affected by the choice of the filter parameters.
Finally, it is the first edge-preserving filter capable of working on
color images at arbitrary scales in real time, without resorting to
subsampling or quantization. It can filter a 1 megapixel color im-
age at approximately 150 fps using three iterations, which is signif-
icantly faster than previous techniques.

We have demonstrated the versatility of our domain transform and
edge-preserving filters on several real-time image and video pro-
cessing tasks including edge-preserving filtering, depth-of-field ef-
fects, stylization, recoloring, colorization, detail enhancement, and

(a) Input (b) Ours (c) Levin et al. [2004]

Figure 16: Colorization example. (a) Grayscale input image with
user scribbles. (c) Our result using RF (σs = 100 and σr = 0.03).
(b) Result of Levin et al. [2004].

tone mapping. One feature of our filters is that their responses stop
at strong edges. This is in contrast with the bilateral filter, whose
kernel can cross edges (Figure 9). We believe both behaviors are
valid and may provide optimal results for different kinds of applica-
tions. The speed, flexibility, and high-quality of the results achieved
with our technique may enable many new applications that have not
been previously possible.

Limitations As most other fast edge-preserving filters, our 2D
filters are not rotationally invariant (i.e., filtering a rotated image
and rotating a filtered image may produce different results). This
behaviour may cause problems for applications that rely on content
matching.

Our 1D edge-preserving filters can be applied to other kinds of sig-
nals and to higher-dimensional data. Other possible directions for
exploration involve applying our filters on meshes, and their imple-
mentation in the frequency domain.
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Appendix: Derivation of RF feedback coeffi-
cient a from the desired variance σ2

H

The continuous equivalent of the recursive kernel is

f(x) = (1− a) ax, x ∈ [0,+∞), a ∈ (0, 1);

where x represents the distance between samples and a is the feed-
back coefficient. f(x) is not normalized since∫ ∞

0

f(x) dx =
(1− a)ax

log(a)

∣∣∣∣∞
0

= − 1− a
log(a)

.

Normalizing f we obtain f(x) = −log(a) ax. The first and second
moments of f are, respectively:

〈f〉 = −log(a)

∫ ∞
0

x axdx = − 1

log(a)
and

〈f2〉 = −log(a)

∫ ∞
0

x2 axdx =
2

log(a)2
.

The variance of f is then given by

V ar(f) = 〈f2〉 − 〈f〉2 =
1

log(a)2
.

Since the signal is filtered twice with f (left-to-right and right-to-
left), the total variance of the filter is 2 V ar(f). Given the desired
variance σ2

H :

σ2
H = 2 V ar(f) =

2

log(a)2
;

we solve for a and find

a = exp(−
√

2/σH) and a = exp(
√

2/σH);

where the former is our solution since a ∈ (0, 1).
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